期刊文献+

多量级应急数据无监督离散化方法研究 被引量:5

Research on Unsupervised Discretization Method for Multi-Magnitudes Emergency Data
在线阅读 下载PDF
导出
摘要 在对连续的多量级应急数据进行离散化时,采用传统无监督离散化方法难以找出量级变化点完成离散。提出一种针对多量级应急数据的无监督离散化方法。根据量级变化的差异性将离散数据由大到小排序,结合拟合函数和二阶导数计算得到准确的量级变化点作为数据截断点,将截断所得较大数据构成的离散类移出待离散数据集,不断重复上述操作直到待离散数据满足设定的离散系数阈值,最终完成全部数据的离散。实验结果表明,该方法实现了地震相关多量级应急数据的均匀离散,其离散系数较等频离散化、层次聚类离散化等传统方法更低,可有效离散化隐藏多量级差异的应急数据。 In the discretization of continuous multi-magnitude emergency data,the traditional unsupervised discretization methods usually fail to find the magnitude change point to complete discretization.This paper proposes an unsupervised discretization method for multi-magnitude emergency data.According to the difference of magnitude changes,the discrete data is sorted from largest to least.The accurate magnitude change point is obtained by combining the fitting function and the second derivative calculation as the data truncation point.Then the discrete class,which is composed of the larger data obtained from the truncation,is removed from the dataset to be discretized.The above steps are repeated until the data to be discretized meets the set discrete coefficient threshold,and finally all the data are discretized.Experimental results show that the proposed method can realize the uniform discretization of earthquake-related multi-magnitude emergency data,and its discretization coefficient is lower than that of the traditional methods such as equal frequency discretization and hierarchical clustering discretization.The method can effectively discretize the emergency data that hides difference between magnitudes.
作者 高天宇 王庆荣 杨妍 马辰坤 GAO Tianyu;WANG Qingrong;YANG Yan;MA Chenkun(School of Electronic and Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China)
出处 《计算机工程》 CAS CSCD 北大核心 2021年第4期313-320,共8页 Computer Engineering
基金 国家自然科学基金(71961016) 教育部人文社会科学研究规划基金(15XJAZH002,18YJAZH148) 甘肃省自然科学基金(18JR3RA125)。
关键词 多量级差异 应急数据 离散化 离散系数 地震信息 multi-magnitudes difference emergency data discretization discretization coefficient earthquake information
  • 相关文献

参考文献6

二级参考文献56

  • 1吴德胜,虞强源.一种基于褶集的模糊区域可视化模型[J].系统仿真学报,2006,18(z1):340-342. 被引量:4
  • 2朱锡庆,黄权国.羊群行为经济理论研究综述[J].经济学动态,2004(7):91-95. 被引量:7
  • 3Nguyen S.H., Nguyen H.S.. Some efficient algorithms for rough set methods. In: Proceedings of the Conference of Information Processing and Management of Uncertainty in Knowledge-Based Systems, Granada, Spain, 1996, 1451~1456.
  • 4Susmaga R.. Analyzing discretizations of continuous attributes given a monotonic discrimination function. Intelligent Data Analysis, 1997, 1(4): 157~179.
  • 5Dai Jian-Hua, Li Yuan-Xiang. Study on discretization based on rough set theory. In: Proceedings of the first International Conference on Machine Learning and Cybernetics, Beijing, 2002, 1371~1373.
  • 6Chen Cai-Yun, Li Zhi-Guo, Qiao Sheng-Yong, Wen Shuo-Pin. Study on discretization in rough set based on genetic algorithm. In: Proceedings of the Second International Conference on Machine Learning and Cybernetics, Xi′an, 2003, 1430~1434.
  • 7Huang Jin-Jie, Li Shi-Yong. A GA-based approach to rough data model. In: Proceedings of the 5th World Congress on Intelligent Control and Automation, Hangzhou. 2004, 1880~1884.
  • 8Roy A., Pal S.K.. Fuzzy discretization of feature space for a rough set classier. Pattern Recognition Letters, 2003, 24(6): 895~902.
  • 9Wang Li-Hong, Zhang Shu-Cui, Fan Hui, Wu Geng-Feng. The information granulation in discretization. In: Proceedings of the Second International Conference on Machine Learning and Cybernedcs, Xi′an, 2003, 2620~2623.
  • 10Li Meng-Xin, Wu Cheng-Dong, Han Zhong-Hua, Yue Yong. A hierarchical clustering method for attribute discretization in rough set theory. In: Proceedings of the third International Conference on Machine Learning and Cybernetics, Shanghai, 2004, 3650~3654.

共引文献189

同被引文献71

引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部