摘要
通过溶剂蒸发和二次高温煅烧石墨相碳化氮(g-C_(3)N_(4))纳米片和WS_(2)纳米片混合物构建WS_(2)/g-C_(3)N_(4)异质结,该异质结保留g-C_(3)N_(4)和WS_(2)主体结构的同时,在界面处形成化学键,确保该异质结的化学稳定性和热稳定性。光催化分解水制氢实验表明,WS_(2)纳米片含量为3wt%时光催化制氢速率高达68.62μmol/h,分别是g-C_(3)N_(4)纳米片和WS_(2)纳米片的2.53倍和15.29倍,表明异质结的构建可大幅提升g-C_(3)N_(4)的光催化性能,循环实验表明该异质结在5次循环实验后光催化性能没有明显下降,表明该异质结的稳定性较好。光电性能测试表明异质结的构建不仅提高激发电子的转移效率,同时抑制激发电子空穴的复合率,大幅提升激发电子的利用效率,致使光催化分解水制氢速率较g-C_(3)N_(4)纳米片和WS_(2)纳米片大幅提升。
The WS_(2)/graphite phase nitrogen carbide(g-C3 N4) heterojunction was established through the solvent evaporation and second calcinations the mixture of g-C_(3)N_(4)nanosheets and WS_(2) nanosheets. The main structure of g-C_(3)N_(4)and WS_(2) in the heterojunction is not destroyed in the calcinations process and the interface is connected by chemical bond, which enhances the stability of heterojunction. The photocatalysis results indicate that the H_(2) production rate reaches to 68.62 μmol/h while the content of WS_(2) is 3 wt%, which are 2.53 times and 15.29 times as that of g-C_(3)N_(4)nanosheets and WS_(2) nanosheets, respectively. Besides, the H_(2) production rate is not decreased distinctly after 5 times circulation experiments, which reveals that the WS_(2)/g-C_(3)N_(4)heterojunction has a good chemical stability. Photoelectric property indicates that the establish of heterojunction structure can not only enhance the transport rate of excited electrons, but also suppress the recombination rate of charge carriers. Thus, the H_(2) production rate is enhanced distinctly compared with that of pure g-C_(3)N_(4)nanosheets and WS_(2) nanosheets.
作者
孟培媛
郭明媛
乔勋
MENG Peiyuan;GUO Mingyuan;QIAO Xun(College of Mechanical Engineering,Xijing University,Xi'an 710123,China;College of Chemistry and Material,Weinan Normal University,Weinan 714099,China)
出处
《复合材料学报》
EI
CAS
CSCD
北大核心
2021年第2期591-600,共10页
Acta Materiae Compositae Sinica
基金
陕西省教育厅专项科学研究计划(17JK1156)
西京学院特区人才专项基金(XJ17T09)。