期刊文献+

基于甚高频的语音增强算法研究

Research on speech enhancement algorithm based on VHF
在线阅读 下载PDF
导出
摘要 甚高频通信在民航中有广泛应用,但是它极易受到各种噪声的干扰,传统方法去噪效果差且没有消除固有干扰,提出了一种基于小波分析的自适应卡尔曼滤波算法。该算法在小波分析中提出了新阈值函数,在自适应卡尔曼滤波算法中增加了调节窗口长度的自适应因子,以此来调节滤波增益,可以有效地避免滤波发散。随机选择了某一时段4种不同频率的甚高频语音信号,并用提出的算法进行滤波处理,从信噪比、均方根误差、信号波形图和语谱图等方面进行分析。结果表明,该算法能够有效去除甚高频语音信号中的噪声,可以获得更高的信噪比和更小的均方根误差,进一步提升语音质量。 VHF communication is widely used in civil aviation, but it is highly susceptible to various noise interferences. The traditional method has poor denoising effect and does not eliminate inherent interference, this paper proposes an adaptive Kalman filter algorithm based on wavelet analysis. In this algorithm, a new threshold function is proposed in the wavelet analysis, and in the adaptive Kalman filter algorithm, an adaptive factor is added to adjust the window length to adjust the filter gain, which can effectively avoid the filter divergence. This paper randomly selects VHF speech signals of four different frequencies in a certain period of time and filtered by the proposed algorithm. The signal-to-noise ratio, root mean square error, signal waveform and spectrogram are analyzed. The results show that the algorithm can effectively remove the noise in VHF speech signal, obtain higher signal-to-noise ratio and smaller root mean square error, and further improve the quality of speech.
作者 卢勇 Lu Yong(Air Traffic Management Center,Civil Aviation Flight University of China,Guanghan 618307,China)
出处 《电子测量技术》 北大核心 2021年第2期65-70,共6页 Electronic Measurement Technology
基金 青年基金项目(Q2019-072)资助。
关键词 甚高频语音信号 自适应卡尔曼滤波 小波分析 信噪比 VHF speech signal adaptive Kalman filter wavelet analysis signal-to-noise ratio
  • 相关文献

参考文献7

二级参考文献54

  • 1郭代飞,高振明,张坚强.利用小波门限法进行信号去噪[J].山东大学学报(理学版),2001,36(3):306-311. 被引量:22
  • 2陈向民,张军,韦岗.基于语谱图的语音端点检测算法[J].电声技术,2006,30(4):46-49. 被引量:4
  • 3付炜,彭光剑.基于小波阈值去噪的改进方法[J].电子测量技术,2006,29(6):46-47. 被引量:9
  • 4Haitao Zhang,Jian Rong, Xiaochun Zhong. The performance comparison and algorithm analysis of first order EKF, Second Order EKF and smoother for GPS/DR navigation [C]//IEEE International Conference on Communication Technology Proceedings, 2008:432-437.
  • 5Jing Yu,Xiyuan Chen. Application of Extended Kalman Filter in Uhre-Tight GPS/INS Integration Based on GPS Software Receiver[M]. IEEE 2010.
  • 6Sebastian Kluge,Konrad Reif, Martin Brokate. Stochastic Stability of the Extended Kalman Filter With Intermittent Observations [J]. IEEE Transactions on automatic control, 2010,55(2):514-518.
  • 7Yao Li, Xiaosu Xu. The application of EKF and UKF to the SINS/GPS integrated navigation systems [M]. IEEE National Natural Science Foundation of China,2010.
  • 8YanLing Hao, Zhen Guo, Feng Sun, Wei Gao .Adaptive Extended Kalman Filtering for SINS/GPS Integrated Naviga- tion Systems [J]. IEEE International Joint Conference on Computational Sciences and Optimization , 2009:192-194.
  • 9J Arenas-Garcia,A R Figueiras-Vidal,A H Sayed.Steady stateperformance of convex combinations of adaptive filters [C]//Proceedings of IEEE International Conference Acous- tics, Speech, and Signal Processing, 2005.
  • 10XING Guo-Quan,Zhao Yuan. Application Analysis of RLS Adaptive Filter in Signal Noise Removing and Simulation[M]. IEEE, 2010.

共引文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部