期刊文献+

基于图卷积神经网络的织物分类研究 被引量:4

Fabric classification based on graph convolutional network
在线阅读 下载PDF
导出
摘要 织物的分类研究在织物生产、服装设计等领域有着广泛应用。提出织物力模型,结合多帧时序信息和图卷积神经网络,给出一种用图来描述织物运动的新方法,通过分析和提取织物视频中的运动特征,实现织物的分类。该方法使用30种不同织物在风力吹动下的视频作为实验数据集,将视频每一帧作为一个图节点,然后根据视频时序性连接同类织物节点的边。此外结合织物力模型对原视频图像作预处理以提取力流特征作为视觉单词存储,再依据视觉单词探索同类与不同类织物间的潜在联系,由此将欧氏织物视频数据转换为非欧氏织物图数据,最后使用图卷积神经网络进行分类处理。该方法避免了传统织物分类过程中织物纹理、颜色、外部光照等因素的影响,突破了传统分类方法只能对少数织物进行分类的限制,有较好的分类效果。 Fabric classification research has been widely used in the field of fabric production,clothing design and so on.This paper introduced a novel method combining fabric force model,the multi-frame timing information with GCN for fabric classification.This method used 30 different fabrics’moving videos with the wind driving as the experimental datasets.Firstly,it took each frame of the video as a graph node,and then according to the video sequence connectioned for the similar fabric edge nodes.Secondly,it used the fabric force model to preprocess the original video image to extract force flow features as visual words and store them,then used the visual words to explore the potential connections between similar and different types of fabrics,so as to transform the Euclidean fabric video data into non-Euclidean fabric graph structured data.Finally,these data processed by GCN network.This work has a good performance without the effectiveness of light,texture and color,breaks through the limitation that traditional classification method can only classify a few fabrics,and has good classification effect.
作者 彭涛 彭迪 刘军平 胡新荣 张自力 陈常念 姜明华 Peng Tao;Peng Di;Liu Junping;Hu Xinrong;Zhang Zili;Chen Changnian;Jiang Minghua(Hubei Province Garment Information Engineering Technology Research Center,Wuhan Textile University,Wuhan 430200,China;Dept.of Mathematics&Computer Science,Wuhan Textile University,Wuhan 430200,China)
出处 《计算机应用研究》 CSCD 北大核心 2021年第5期1581-1585,1594,共6页 Application Research of Computers
基金 湖北省自然科学基金资助项目(2014CFB764) 湖北省教育厅青年项目(Q201316) 湖北省教育厅科研计划重点项目(D20191708)。
关键词 织物 织物力模型 视觉单词 多帧时序 图卷积神经网络 fabric fabric force model visual words multi-frame sequence graph convolutional network(GCN)
  • 相关文献

参考文献7

二级参考文献29

  • 1边肇祺 张学工.模式识别[M].北京:清华大学出版社,2001..
  • 2XU B, CUMINATO D F, KEYES N M. Evaluating fabric smoothness appearance with a laser profilometer[J].Textile Research, 1998, 30(2): 900-906.
  • 3XU B, REED J A. Instrumental evaluation of fabric wrinkle recovery[J]. Textile Institute, 1995, 86(1 ): 129-135.
  • 4Illumination and shading[EB/OL].http://gc, n uaa. e d u. cn/h angkon g/zjj/cad2/C omputer% 20graphic s%20and%20geometric% 20m ode ling%2 0 implementati on % 20an d% 20algorithm s/9. p d f.
  • 5ROY-CHOWDHURY A, XU YILEI. Pose and illumination invariant face recognition using video sequences[J]. Signals and Communication Technology, 2007, Part 1: 9-25.
  • 6WIEGMANN A. Effective properties of nonwoven textiles from microstructure simulations[J]. Progress in Industrial Mathematics at ECMI 2006, Mathematics in Industry, 2008, 12(2): 708-712.
  • 7LACHKAR A,BENSLIMANE R, DORAZIO L, et al.A system for textile design patterns retrieval : part I :design patterns extraction by adaptive and efficient colorimage segmentation method [ J ].Journal of the TextileInstitute, 2006, 27 (4) : 301 -312.
  • 8MAYER A, GREENSPAN H. An adaptive mean-shiftframework for MRI brain segmentation [ J ].IEEETransactions on Medical Imaging, 2009,28 ( 8 ):1238 - 1250.
  • 9TSAI Duming, LUO Jieyu. Mean shift-based defectdetection in multicrystalline solar wafer surfaces [ J ].IEEE Transactions on Industrial Informatics, 2011 ,7(1) : 125 - 135.
  • 10YANG Xiaodong, LI Houqiang, ZHOU Xiaobo. Nucleisegmentation using marker controlled watershed,tracking using mean-shift, and k aim an filter in time-lapse microscopy [ J ].IEEE Transactions on Circuitsand Systems,2006,53(11) ; 2405 - 2414.

共引文献95

同被引文献53

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部