期刊文献+

人工神经网络模型发展及应用综述 被引量:235

Review of Development and Application of Artificial Neural Network Models
在线阅读 下载PDF
导出
摘要 人工神经网络与其他学科领域联系日益紧密,人们通过对人工神经网络层结构的探索和改进来解决各个领域的问题。根据人工神经网络相关文献进行分析,综述了人工神经网络算法以及网络模型结构的发展史,根据神经网络的发展介绍了人工神经网络相关概念,其中主要涉及到多层感知器、反向传播神经网络、卷积神经网络以及递归神经网络,描述了卷积神经网络发展当中出现的部分卷积神经网络模型和递归神经网络中常用的相关网络结构,分别综述了各个人工神经网络算法在相关领域的应用情况,总结了人工神经网络的未来发展方向。 Artificial neural networks are increasingly closely related to other subject areas.People solve problems in various fields by exploring and improving the layer structure of artificial neural networks.Based on the analysis of artificial neural networks related literature,this paper summarizes the history of artificial neural network growth and presents relevant principles of artificial neural networks based on the development of neural networks,including multilayer perceptron,back-propagation algorithm,convolutional neural network and recurrent neural network,explains the classic convolutional neural network model in the development of the convolutional neural network and the widely used variant network structure in the recurrent neural network,reviews the application of each artificial neural network algorithm in related fields,summarizes the possible direction of development of the artificial neural network.
作者 张驰 郭媛 黎明 ZHANG Chi;GUO Yuan;LI Ming(School of Computer and Control Engineering,Qiqihar University,Qiqihar,Heilongjiang 161000,China)
出处 《计算机工程与应用》 CSCD 北大核心 2021年第11期57-69,共13页 Computer Engineering and Applications
基金 国家自然科学基金(61872204) 黑龙江省属高等学校基本科研业务费专项(135309462)。
关键词 人工神经网络 多层感知器 递归神经网络 artificial neural network multilayer perceptron recurrent neural network
  • 相关文献

参考文献36

二级参考文献170

  • 1车久菊.B2C电子商务模式下电商企业经营模式变革[J].中外企业家,2020,0(11):88-89. 被引量:4
  • 2张辉,刘嘉焜,柳湘月,郭晓泽.交通流的季节ARIMA模型与预报[J].天津大学学报(自然科学与工程技术版),2005,38(9):838-841. 被引量:17
  • 3王菲.一种基于自适应遗传BP算法的神经网络目标分类器设计方法[J].自动化技术与应用,2007,26(12):80-82. 被引量:4
  • 4LeCun Y,Bottou L,Bengio Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324.
  • 5Ossama A H,Mohamed A R,Jiang H,et al.Applying convolutional neural networks concepts to hybrid NN-HMM modelfor speech recognition[C]∥2012IEEE International Conference on Acoustics,Speech and Signal Processing.Kyoto,Japan:IEEE Computer Society Press,2012:4277-4280.
  • 6Turaga S C,Murray J F,Jain V,et al.Convolutional networks can learn to generate affinity graphs for image segmentation[J].Neural Computation,2010,22(2):511-538.
  • 7Krizhevsky A,Sutskever I,Hinton G E.Image net classification with deep convolutional neural networks[J].Advances inNeural Information Processing Systems,2012,25(2):1097-1105.
  • 8Ciresan D,Meier U,Schmidhuber J.Multi-column deep neural networks for image classification[C]∥2012IEEE Conferenceon Computer Vision and Pattern Recognition.[S.l.]:IEEE Computer Society Press,2012:3642-3649.
  • 9Arel I,Rose D C,Karnowski T P.Deep machine learning—A new frontier in artificial intelligence research[J].Computation-al Intelligence Magazine,2010,5(4):13-18.
  • 10Burges C J C.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2(2):121-167.

共引文献418

同被引文献2837

引证文献235

二级引证文献423

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部