摘要
提出综合管廊地埋管换热系统,将地埋管与综合管廊的混凝土结构相结合,通过管内流体吸收管廊围岩的热量用于建筑供热或供冷,不仅省去传统地源热泵的钻孔费用,且系统运行更加稳定。为研究地埋管的换热情况和地埋管运行对综合管廊内空气温度的影响情况,建立管内流体、管廊内空气及混凝土结构和土壤的耦合传热数理模型。同时,分别选取中国5个气候分区的代表城市,对地埋管换热器的地区适应性进行模拟分析。计算结果表明:夏季工况下,严寒地区地埋管的单位管长换热量最大,为106 W/m,夏热冬暖地区相对最小,为53 W/m;冬季工况下,夏热冬暖地区地埋管的单位管长换热量最大,可达44 W/m,严寒地区由于土壤温度低于地埋管内流体温度无法运行,寒冷地区换热量可达24 W/m;处于管廊不同位置处地埋管的换热能力也不同,其中底板的换热量大于侧壁大于顶板,且地表面年周期性温度波幅越大的城市,不同位置处地埋管的换热能力差别也越大;根据对比是否埋设地埋管的计算工况,得出地埋管换热系统的运行不会对管廊内空气温度造成大的影响。
The ground-source heat pump system in utility tunnel is presented,which combines buried pipes with the concrete structure of utility tunnel.It can absorb the heat of the surrounding rock of utility tunnel through the fluid in the buried pipes.The drilling cost of traditional GSHP is saved and the system runs more stably.In order to study the heat transfer of buried pipes and the influence of the operation of buried pipes on the air inside the utility tunnel.Establish the mathematical and physical model of coupled heat transfer of the fluid in the buried pipes,the air in the utility tunnel,the concrete structure and the soil around.Meanwhile,choose five cities from five climate divisions as representatives for simulation calculation to study the regional adaptability of the ground heat exchanger.The results shows,in summer,the heat flux of unit pipe in the cold climate area is the largest summer,106 W/m,and that in the hot summer and warm winter area is relatively the smallest,53 W/m.In winter,the heat flux of unit pipe in the hot summer and warm winter area is the largest,44 W/m,while the buried pipes in severe cold area can’t work as the temperature of soil is lower than that of fluid in buried pipes,the heat flux of unit pipe in the cold area can reach 24 W/m.The heat transfer capacity of buried pipes in different locations of utility tunnel is also different.the heat flux of unit pipe in the bottom plate is greater than that in sidewall,and the heat flux of unit pipe in sidewall is greater than that in top plate.And the larger the annual temperature fluctuations on the surface is,the greater the difference of heat transfer capacity of buried pipes in different locations is.Comparing with the simulated condition of no buried pipes,it is concluded that the heat transfer of the buried pipes in the concrete structure will not have a great impact on the temperature of air inside the utility tunnel.
作者
李思茹
袁艳平
曹晓玲
孙亮亮
向波
Li Siru;Yuan Yanping;Cao Xiaoling;Sun Liangliang;Xiang Bo(School of Mechanical Engineering,Southwest Jiaotong University,Chengdu 610031,China)
出处
《太阳能学报》
EI
CAS
CSCD
北大核心
2021年第5期24-31,共8页
Acta Energiae Solaris Sinica
基金
建筑环境与能源高效利用四川省青年科技创新研究团队项目(2015TD0015)。
关键词
地热能
地源热泵
热交换器
综合管廊
变温带
计算流体力学
geothermal energy
geothermal heat pump
heat exchanger
utility tunnel
solar warming layer
computational fluid dynamic