期刊文献+

广义Riccati矩阵方程异类约束解的两种迭代算法

Two iterative algorithms for heterogeneous constrained solutions of generalized Riccati matrix equation
在线阅读 下载PDF
导出
摘要 针对在时变系统中提出的广义Riccati矩阵方程约束解问题,基于共轭梯度算法原理建立了两种求广义Riccati矩阵方程异类约束解(对称和反对称解)的算法,即非精确牛顿修正共轭梯度算法(In-Newton-MCG算法)和非精确牛顿正交投影算法(In-Newton-OPA算法),并给出了两种算法收敛性结论和两种算法的数值实验.算例表明,In-Newton-MCG算法在一定条件下比In-Newton-OPA算法具有更高的计算效率. Two algorithms called inexact Newton modified conjugate gradient algorithm(In-Newton-MCG algorithm)and inexact Newton orthogonal projection algorithm(In-Newton-OPA algorithm)are developed in this paper,the two algorithms are based on the principle of conjugate gradient algorithm,which are developed for solving the constrained solutions of generalized Riccati matrix equation in time-varying systems.The convergence results and numerical experiments of the two algorithms are given.Numerical experiments shows that the In-Newton-MCG algorithm is more efficient than the In-Newton-OPA algorithm under certain conditions.
作者 陈世军 CHEN Shijun(Yango University,Fuzhou 350015,China)
机构地区 阳光学院
出处 《延边大学学报(自然科学版)》 CAS 2021年第2期120-125,130,共7页 Journal of Yanbian University(Natural Science Edition)
基金 福建省教育厅中青年教师教育科研项目(JAT190410)。
关键词 Riccati矩阵方程 修正共轭梯度算法 非精确牛顿算法 正交投影算法 Riccati matrix equation modified conjugate gradient algorithm inexact Newton algorithm orthogonal projection algorithm
  • 相关文献

参考文献5

二级参考文献36

  • 1徐道义,钟守铭,黎明.大系统的BIBO稳定性[J].控制理论与应用,1995,12(6):758-763. 被引量:4
  • 2龚丽莎,胡锡炎,张磊.主子阵约束下矩阵方程AX=B的对称最小二乘解[J].数值计算与计算机应用,2006,27(2):154-160. 被引量:6
  • 3唐智礼.约束最优控制理论及其在气动优化中的应用[J].力学学报,2007,39(2):273-277. 被引量:7
  • 4Lewis F L.A survey of linear singular systems[J].Circuits,Systems and Systems Processing,1986,5 (1):3.
  • 5Campell S L,Petzold L.Canonical forms and solvable singular system of differential equation[J].SIAM J Alg Discrete Math,1983,4(4):517.
  • 6Campell S L,Terrel W J.Observability for linear time-varying descriptor system[J].SIAM J Matrix Anal Applic,1991,12(4):484.
  • 7Takaba K.Robust H∝ control of descriptor system with time varying uncertainty[J].Int J,1998,71(4):559.
  • 8Takaba K,Morrihira N.A generalized Lyapunov theorem for descriptor systems[J].IEE Proc Control Theory,1995,4:49.
  • 9ZHU Jinghao.On nonautonomous linear-quadratic optimal control[J].Journal of Tongji University:Natural Science,1997,25(6):709.
  • 10Golub G H,Van Loan C F.Matrix computations[M].3rd ed.Baltimore:Johns Hopkins University Press,1996.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部