期刊文献+

融合社交关系和局部地理因素的兴趣点推荐 被引量:5

POI Recommendation Fusing Social Relations and Local Geographic Factors
在线阅读 下载PDF
导出
摘要 兴趣点(Point-Of-Interest,POI)推荐是基于位置社交网络(Location-Based Social Network,LBSN)中一项重要的个性化服务,可以帮助用户发现其感兴趣的POI,提高信息服务质量。针对POI推荐中存在的数据稀疏性问题,提出一种融合社交关系和局部地理因素的POI推荐算法。根据社交关系中用户间的共同签到和距离关系度量用户相似性,并基于用户的协同过滤方法构建社交影响模型。为每个用户划分一个局部活动区域,通过对区域内POIs间的签到相关性分析,建立局部地理因素影响模型。基于加权矩阵分解挖掘用户自身偏好,并融合社交关系和局部地理因素进行POI推荐。实验表明,所提出的POI推荐算法相比其他方法具有更高的准确率和召回率,能够有效缓解数据稀疏性问题,提高推荐质量。 POI recommendation is an important personalized service in Location-Based Social Network(LBSN),which can help users discover POIs and improve the quality of information services.Aiming at the problem of data sparsity in POI recommendation,this paper proposes a POI recommendation algorithm combining social relationship and local geographic factors.This algorithm measures user similarity based on the common check-in and distance relationships among users in the social relationship,and builds a social model through user collaborative filtering.A local activity area for each user is divided,and the sign-in correlation is analyzed to establish a local geographic factor model.Based on weighted matrix decomposition,users’own preferences are mined,and social relationships and local geographic factors for POI recommendation are integrated.Experiments on the Gowalla dataset show that the proposed POI recommendation algorithm has higher accuracy and recall rate than other methods,which can effectively alleviate the problem of data sparsity and improve recommendation performance.
作者 夏英 张金凤 XIA Ying;ZHANG Jinfeng(School of Computer Science and Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处 《计算机工程与应用》 CSCD 北大核心 2021年第15期133-139,共7页 Computer Engineering and Applications
基金 国家自然科学基金(41971365) 重庆市基础与前沿研究计划(cstc2019jcyjmsxm0131) 重庆市研究生科研创新项目(CYS20277)。
关键词 位置社交网络 兴趣点推荐 社交关系 局部地理因素 加权矩阵分解 Location-Based Social Networks(LBSN) Point-Of-Interest(POI)recommendation social relationship local geographic factors weighted matrix factorization
  • 相关文献

参考文献4

二级参考文献31

  • 1张光卫,李德毅,李鹏,康建初,陈桂生.基于云模型的协同过滤推荐算法[J].软件学报,2007,18(10):2403-2411. 被引量:197
  • 2Ricci F, Rokach L, Shapira B, et al. Recommender systems handbook[ M]. Is. 1. ] :Springer,2010.
  • 3Hill W, Stead L, Rosenstein M, et al. Recommending and eval- uating choices in a virtual community of use [ C ]//Proc of CHI. [s. 1. ]:Is. n. ],1995:194-201.
  • 4Bobadilla J, Ortega F, Hernando A. A collaborative filtering similarity measure based on singularities[ J]. Information Pro- cessing and Management,2012,48:204-217.
  • 5Greg L, Brent S,York J. Amazon. com recommendations:item -to - item collaborative filtering [ J ]. IEEE Internet Compu- ting,2003,7( 1 ) :76-80.
  • 6Jaccard P. The distribution of the flora in the alpine zone[ J]. New Phytologist, 1912,11 ( 2 ) :37-50.
  • 7Tan Pangning, Steinbach M, Kumar V. Introduction to data mining[ M]. Is. 1. ]:Addison Wesley,2005.
  • 8Anand D, Bharadwaj K K. Utilizing various sparsity measures for enhancing accuracy of collaborative recommender systems based on local and global similarities [ J ]. Expert Systems with Applications ,2011,38 ( 5 ) :5101-5109.
  • 9许海玲,吴潇,李晓东,阎保平.互联网推荐系统比较研究[J].软件学报,2009,20(2):350-362. 被引量:548
  • 10李聪,梁昌勇,杨善林.电子商务协同过滤稀疏性研究:一个分类视角[J].管理工程学报,2011,25(1):94-101. 被引量:21

共引文献107

同被引文献27

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部