期刊文献+

一种基于计算机视觉的暴力分拣行为识别方法 被引量:1

An Identification Method of Violent Sorting Behavior in the Express Delivery Industry Based on Computer Vision
在线阅读 下载PDF
导出
摘要 近年来,快递行业内“暴力分拣”现象层出不穷,为解决传统依靠人工监控耗时耗力且作用不明显的弊端,提出一种基于计算机视觉的快递暴力分拣行为识别方法,将识别过程分为两个阶段:第一个阶段采用卷积神经网络与长短期记忆网络相结合形成的网络进行分拣人员分拣动作的识别及分类,对于一些常见暴力分拣的动作直接判定;第二阶段,采用三帧差法和Canny边缘检测相结合进行运动包裹的检测,从而获取其运动轨迹,判断运动包裹的移动轨迹是否大于阈值,大于则判定为暴力分拣。文章所提出的方法,能有效提高快递暴力分拣行为识别的实时性及准确率,从而提升快递行业服务质量。 In recent years,the phenomenon of“violent sorting”is constantly seen in the express delivery industry.In order to solve the disadvantages of traditional manual monitoring analysis,which is time-consuming and ineffective,this paper proposes a method based on computer vision to identify the violent sorting behavior.This identification process is mainly divided into two stages:the first stage uses the LRCN network which combines CNN and LSTM to identify and classify the sorter s sorting behaviors.If there is kicking and trampling behavior,it is directly judged as violent sorting.If there is no kicking or trampling behavior,it enters the second stage,and uses the combination of three-frame difference method and Canny edge detection method to detect the moving package,so as to obtain its moving track.If the horizontal or vertical distance of the moving package is greater than the threshold value,it will be determined as violent sorting.The method proposed in this paper can effectively improve the real-timeness and accuracy rate of violent sorting behavior identification,so as to improve the service quality of the express delivery industry.
作者 邓秀琴 何鹏志 倪卫红 赵成国 DENG Xiu-qin;HE Peng-zhi;NI Wei-hong;ZHAO Cheng-guo(School of Economics and Management,Nanjing Tech University,Nanjing,Jiangsu 211816)
出处 《供应链管理》 2021年第6期109-116,共8页 SUPPLY CHAIN MANAGEMENT
基金 江苏省大学生创新创业训练计划项目“视觉识别技术在智慧物流系统中的应用研究--配送分拣领域”(2020DC0656)。
关键词 暴力分拣 卷积神经网络 长短期记忆网络 三帧差法 CANNY边缘检测 violent sorting CNN LSTM network three-frame difference method Canny edgedetection
  • 相关文献

参考文献7

二级参考文献26

  • 1魏志强,纪筱鹏,冯业伟.基于自适应背景图像更新的运动目标检测方法[J].电子学报,2005,33(12):2261-2264. 被引量:54
  • 2杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 3Paragios N,Deriche R.Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects.IEEE Transactions on Pattern Analysis and Machine Intelligence,2000.22(3):266~280
  • 4Wu Zeju,Chen Jundong,Liu Yun,et al.Video object segmentation of still background.Joumal of Qingdao University of Science and Technology,2004.25(5):457~460
  • 5Cucchiara R,Grana C,Piccardi M et al.Improving shadow suppression in moving object detection with HSV color information.Proceedings of IEEE Intelligent Transportation Systems Conference,Oakland,CA,USA,2001:334~339
  • 6K W Bow Yer, K Chang, P Flynn. A survey of approaches and challenges in 3D And multimodal 2d + 3d face recognition [ J ]. Couputer vision and image understanding 2006,101 (1) :1 -15.
  • 7郑建湖,陈洪,董德存.快速路交通事件自动检系统及算法[J].计算机测量及控制,2006,14(9):1143-1145.
  • 8M Heikkila, M Pietikainen. A texture - based method for modeling the background and detecting moving objects[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006,28(4 ) : 657 - 662.
  • 9Ghosh Kuntal, Sarkar Sandip, Bhanmik Kamales. A theory of "fuzzy" edge detection in the light of human visual system I J]. Journal of Intelligent Systems, 2008,17 ( 1 ) : 229 - 246.
  • 10Timothy S Newman, Hong Yi. A survey of the marching cubes al- gorithm [ J ]. Computers & Graphics, 2006,30 (5) :854 - 879.

共引文献114

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部