期刊文献+

基于连续谱的氩气纳秒脉冲放电中电子温度的研究 被引量:3

Research on the Electron Temperature in Nanosecond Pulsed Argon Discharges Based on the Continuum Emission
在线阅读 下载PDF
导出
摘要 采用了一种针对针的放电结构,将其放置在一个高纯氩气的密闭腔室中,通过施加正极性的过电压产生可重复的大气压纳秒脉冲放电,并提出建立大气压放电的连续辐射模型来诊断氩气纳秒脉冲放电中的电子温度。实验利用电压和电流探头分别获取放电过程中的电压和电流波形图,其放电脉宽约为20 ns。通过消色差透镜、单色仪和ICCD等光学系统的组合来测量放电正柱区在不同时刻(0<t<20 ns)的时间分辨发射光谱。结果表明,放电中连续谱的强度随时间先增加(0<t<10 ns)后减小(10 ns<t<20 ns),但是氩原子的谱线强度则随时间的增加而一直增大。研究表明连续谱强度与电子密度成正相关,因而电子密度随着时间也是先增加而后减小,这与放电电流的变化规律是完全一致的。根据连续谱模型拟合得到放电过程中(0<t<10 ns)的电子温度为(1.4±0.2)eV。随着驱动电压的下降(10 ns<t<20 ns),电子温度逐步减小至0.9 eV。在0<t<10 ns中,激发态氩原子主要是由电子碰撞激发产生的,因而谱线强度随着电子密度的增加而增大。然后,随着电子温度的减小,Ar+2复合反应速率激增,导致电子与离子的复合过程主导产生激发态氩原子,即谱线强度继续增大。通过加入0.5%的水蒸气以获取OH的振转光谱。实验发现,OH(A)的产生机制使其偏离玻尔兹曼平衡分布,本文采用了双温的OH(A-X)光谱模型来考察气体温度。在放电过程中,气体温度保持不变,大约为400 K。此外,水蒸气的加入使得短波长的连续谱发生显著增强。光谱分析认为H 2O在放电中能够解离产生H 2,继而与氩原子的亚稳态发生能量转移生成激发态H_( 2)(a^(3)Σ_(g)^(+))。H _(2)(a^(3)Σ_(g)^(+))将会自发辐射跃迁到排除态H ^(2)(b^( 3)Σ_(u)^(+)),同时发射短波长的连续谱。由于短波长的连续谱对电子温度(T_(e)>1 eV)的响应较为灵敏,所以载气中少量的水蒸气将会对连续谱诊断电子温度带来较大的影响。 In this paper,atmospheric pressure nanosecond pulsed discharges in pin-to-pin geometry are very easily reproducible by applying a positive overvoltage,and such discharge system is placed in a sealed chamber filled with high purity argon gas.A continuum radiation model for the atmospheric pressure discharges is proposed to diagnose the electron temperature of the nanosecond pulsed argon discharges.The high voltage and current probes monitor the voltage and current waveforms during the discharge,and the discharge pulse width is about 20 ns.The time-resolved emission spectra of the discharge column at different times(0<t<20 ns)are measured by the combination of optical systems,such as achromatic lens,monochromator and ICCD.The results indicate that the continuum emission intensity of the discharge increases with time during the period of 0<t<10 ns,and then decreases during 10 ns<t<20 ns.However,the intensity of argon lines always increases with time.As the intensity of continuum emission is positively correlated to the electron density,the electron density also increases firstly and then decreases,which has the same tendency as the discharge current.According to the continuum radiation model,the electron temperature during the discharge(0<t<10 ns)is measured to be(1.4±0.2)eV.As the driven voltage drops(10 ns<t<20 ns),the electron temperature decreases gradually to 0.9 eV.Our research suggests that the excited argon atoms are mainly populated by electron impact excitation during 0<t<10 ns,and thus their emission intensities increase with the electron density.Afterwards,due to the decreasing of electron temperature,the rate of Ar+2 ions recombination reaction increases dramatically.The production of excited atoms is governed by the electronion recombination processes,leading to increase their emission intensities further.The virotational spectrum of OH species is detected by adding 0.5%water vapor into the working gas.It is found that the production mechanisms of OH(A)make it deviated from Boltzmann distribution.In this work,a two-rotational temperatures OH(A-X)spectral model is employed to examine the gas temperature.During the discharge pulse,the gas temperature remains invariant around the value of 400 K.Moreover,the addition of water vapor causes the increase of the intensity of the continuum in the short wavelength range.It is analyzed that H 2 could be produced by the dissociation of H 2O in the discharge and then excited to the excited state H _(2)(a^( 3)Σ_(g)^(+))by means of the energy transfer reaction from argon atoms in a metastable state.Finally,H_( 2)(a ^(3)Σ_(g)^(+))decays by spontaneous radiation to the repulsion state H _(2)(b^( 3)Σ_(u)^(+))and emits the short-wavelength continuum emission.The electron temperature(T e>1 eV)is very sensitive to the short wavelength response of the continuum spectrum.So even if the working gas contains a small amount of water vapor,it will greatly influence the electron temperature diagnosed by the continuum radiation.
作者 陈传杰 樊永胜 方忠庆 王媛媛 孔维宾 周锋 王如刚 CHEN Chuan-jie;FAN Yong-sheng;FANG Zhong-qing;WANG Yuan-yuan;KONG Wei-bin;ZHOU Feng;WANG Ru-gang(School of Information Engineering,Yancheng Institute of Technology,Yancheng 224051,China;Research Center of Photoelectric and Information Technology,Yancheng Institute of Technology,Yancheng 224051,China;School of Automotive Engineering,Yancheng Institute of Technology,Yancheng 224051,China)
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2021年第8期2337-2342,共6页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(51806186) 江苏省高等学校自然科学研究面上项目(19KJB510061) 盐城工学院引进人才校级科研项目(XJR2020031) 盐城工学院大学生创新创业项目(2020325)资助。
关键词 大气压放电 发射光谱 纳秒脉冲放电 电子温度 连续谱 Atmospheric pressure discharges Optical emission spectroscopy Nanosecond pulsed discharges Electron temperature Continuum radiation
  • 相关文献

参考文献3

二级参考文献124

  • 1邵涛,孙广生,严萍,彭燕昌,张适昌.纳秒脉冲气体放电机理研究现状[J].高电压技术,2004,30(7):40-42. 被引量:20
  • 2陈伟华,任先文,王保健,杨睿戆,涂国锋,李小金,任志凌,徐建,赵君科.脉冲放电等离子体烟气脱硫脱硝工业试验[J].能源环境保护,2006,20(1):17-22. 被引量:10
  • 3吴彦,占部武生.脉冲放电法消除汞蒸气的实验研究[J].环境科学学报,1996,16(2):221-225. 被引量:19
  • 4严宗诚,陈砺,王红林.甲醇溶液辉光放电等离子体电解[J].物理化学学报,2007,23(6):835-840. 被引量:5
  • 5张彦彬,王宁会,吴彦.3000 m^3/h 烟气脱硫试验系统的设计与运行[J].大连理工大学学报,1997,37(5):551-554. 被引量:16
  • 6Wilson C T R. The acceleration of 13-particles in strong electric fields such as those of thunderclouds[C]//Mathematical Proceedings of the Cambridge Philosophical Society. [S.l.]: Cambridge University Press, 1925: 534-538.
  • 7Frankel S, Highland V, Sloan T, et aL Observation of X-rays from spark discharges in a spark chamber[J]. Nuclear instruments and Me- thods, 1966, 44(2): 345-348.
  • 8Noggle R C, Krider E 12, Wayland J IL A search for X rays from helium and air discharges at atmospheric pressure[J]. Journal of Applied Physics, 1968, 39(10): 4746-4748.
  • 9Stankevich Y L, Kalinin V G. Fast electrons and X-ray radiation during the initial stage of growth of a pulsed spark discharge in air[J]. Soviet Physics Doklady, 1968, 12(11): 1041-1043.
  • 10Tarasova L V, Khudyakova L N, Loiko T V, at aL Fast electrons and X rays from nanosecond gas discharges at 0.1-760 Tort[J]. Soviet Phys- ics Technical Physics, 1974, 19(3): 351-353.

共引文献303

同被引文献23

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部