摘要
为避免航天器受到火工分离螺母作用时的高冲击载荷而造成故障,采用金属橡胶隔振器抑制分离螺母内活塞撞击所激起的冲击响应。通过在分离螺母活塞运动末端安装大刚度、中刚度和小刚度三种金属橡胶隔振器,分析500~10000 Hz的频域内的冲击响应谱。结果表明,金属橡胶隔振器的冲击抑制效应主要发生在3000 Hz以上的频段上,5000 Hz以上的频段的冲击抑制效果最为显著。使用小刚度隔振器后使最大加速度响应从1330 g下降至852 g,分析频域内的最大降幅为675 g@5993 Hz;使用中刚度隔振器后的使最大加速度响应从1530 g下降至1251 g,分析频域内的最大降幅为539 g@9514 Hz;使用大刚度隔振器后的最大加速度响应从1697 g下降至1416 g,分析频域内的最大降幅为281 g@8476 Hz。使用金属橡胶隔振器实现了较好的冲击抑制效果,对于火工作动装置的降冲击设计提供了一种可行的方法。
In order to prevent the spacecraft from being damaged by the high pyroshock during the action of the pyrotechnic sepa⁃ration nuts,a metal rubber vibration isolator(MRVI)was used to suppress the pyroshock response caused by the impact of the piston in the separation nut.Three kinds of MRVIs with different stiffness were installed at the end of the piston movement in the separating nut,and the shock response spectrum(SRS)in the frequency domain of 500 Hz to 10000 Hz was analyzed.The re⁃sults show that the pyroshock suppression effect of the MRVI mainly occurs in the frequency band above 3000 Hz,and the pyro⁃shock suppression effect in the frequency band above 5000 Hz is the most significant.The maximum acceleration response after installing a small⁃stiffness MRVI is reduced from 1330 g to 852 g,and the maximum reduction in analysis frequency domain is 675 g@5993 Hz.The maximum acceleration response after installing a medium⁃stiffness MRVI is reduced from 1530 g to 1251 g,and the maximum reduction in analysis frequency domain is 539 g@9514 Hz.The maximum acceleration response after install⁃ing a large⁃stiffness MRVI is reduced from 1697 g to 1416 g,and the maximum reduction in analysis frequency domain is 538 g@8476 Hz.The use of MRVI achieves a better pyroshock suppression effect,and provides a viable method for the pyroshock re⁃duction design of the pyrotechnical actuation devices.
作者
赵象润
严楠
郭崇星
代五四
黄金红
傅绍斌
ZHAO Xiang-run;YAN Nan;GUO Chong-xing;DAI Wu-si;HUANG Jin-hong;FU Shao-bin(State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,Beijing 100081,China;Institute of Pyrotechnics Technology,Liaoning North Huafeng Special Chemical Co.,Ltd.,Fushun 113003,China)
出处
《含能材料》
EI
CAS
CSCD
北大核心
2021年第9期848-854,I0008,共8页
Chinese Journal of Energetic Materials
基金
国家自然科学基金资助(U1530135)。