期刊文献+

Predicting sandy soil moisture content with hyperspectral imaging 被引量:1

原文传递
导出
摘要 In this study,a rapid and non-invasive technology for predicting soil moisture content(SMC)was presented based on hyperspectral imaging(HSI).Firstly,a set of HSI system was developed to collect both spectral(400-1000 nm)and spatial(1620×841 pixels)information from sandy soil samples with variable SMC levels in the laboratory.Principal component analysis(PCA)transformation,K-means clustering,and several other image processing methods were performed to obtain a region of interest(ROI)of soil sample from the original HSI data.Then,256 optimal spectral wavelengths were selected from the average reflectance of the ROI,and 28 textural features were extracted using a gray-level co-occurrence matrix(GLCM).Data dimensionality reduction was conducted on both the spectral information and textural information by using a partial least square algorithm.Six latent variables(LVs)extracted from the spectral information,four LVs extracted from the textural information and fused data were used to build regression models with a three-layer BPNN,respectively.The results showed that all of the three calibration models achieved high prediction accuracy,particularly when using spectral information with R^(2)_(C)=0.9532 and RMSEC=0.0086.However,validation models demonstrate that predicting SMC using fused data is more effective than using spectral reflectance and textural features separately,with a R^(2)_(P)=0.9350 and RMSEP=0.0141,thus proving that the HSI technique is capable of detecting SMC.
出处 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2017年第6期175-183,共9页 国际农业与生物工程学报(英文)
基金 This research was financially supported by International Science and Technology Cooperation Project of China Ministry of Agriculture(2015-Z44).
  • 相关文献

参考文献6

二级参考文献94

共引文献147

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部