期刊文献+

基于GRU改进RNN神经网络的飞机燃油流量预测 被引量:26

Prediction of Aircraft Fuel Flow Based on Recurrent Neural Network
在线阅读 下载PDF
导出
摘要 利用从飞机快速存储记录器(quick access recorder,QAR)中获取的大量数据设计研究了一种利用循环神经网络(recurrent neural network,RNN)及其改进网络门控循环单元(gate recurrent unit,GRU)进行飞机燃油流量预测的模型。首先使用基于时间的反向传播算法(back propagation trough time,BPTT)训练网络,Adam优化算法加速迭代更新神经网络权重。在参数调整实验中发现循环神经网络对历史信息利用能力不足,极易发生梯度消失与梯度爆炸,遂提出改进网络结构,引入GRU重构燃油流量预测模型。在最优的超参数条件下,重构模型在训练集和测试集上的损失函数均方误差(mean squared error,MSE)值分别为0.00108、0.00097。通过与朴素RNN的预测曲线和MSE对比可以发现,改进后的GRU网络能够“记忆”更多历史信息而不易出现梯度消失或梯度爆炸的问题,预测精度与曲线拟合能力显著提高。因此,GRU重构模型显著改善了预测能力,并通过实际案例验证该预测模型在故障诊断等领域的应用。 A fuel flow prediction model based on recurrent neural network(RNN)and its improved network gate recurrent unit(GRU)was designed and studied based on a large amount of data obtained from aircraft quick access recorder(QAR).Firstly,back propagation trough time(BPTT)algorithm was used to train the network,and Adam optimization algorithm was used to speed up the iterative updating of neural network weights.In the experiment of parameter adjustment,it is found that the cyclic neural network can not make full use of historical information and is prone to gradient disappearance and gradient explosion.Under the optimal hyperparametric conditions,the mean squared error(MSE)values of the reconstruction model on the training set and the test set are 0.00108 and 0.00097 respectively.Compared with the prediction curve and MSE of naive RNN,it can be found that the improved GRU network can“memorize”more historical information without the problems of gradient disappearing or gradient explosion,and the prediction accuracy and curve fitting ability are significantly improved.Therefore,the GRU reconstruction model significantly improves the prediction ability,and the application of the prediction model in fault diagnosis and other fields is verified by practical cases.
作者 陈聪 候磊 李乐乐 杨鑫涛 CHEN Cong;HOU Lei;LI Le-le;YANG Xin-tao(Aeronautical Engineering College, Civil Aviation University of China, Tianjin 300300, China;School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China;School of Energy and Power Engineering, Beihang University, Beijing 100191, China)
出处 《科学技术与工程》 北大核心 2021年第27期11663-11673,共11页 Science Technology and Engineering
基金 工信部民机专项(MJZ-2017-Y-82) 中央高校基本科研业务费(3122020032)。
关键词 燃油流量预测 RNN神经网络 GRU神经网络 BPTT算法 fuel flow prediction RNN neural network GRU neural network BPTT algorithm
  • 相关文献

参考文献8

二级参考文献74

共引文献132

同被引文献265

引证文献26

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部