期刊文献+

基于配对制度的DPoS共识机制 被引量:5

DPoS consensus mechanism based on matching mechanism
在线阅读 下载PDF
导出
摘要 针对授权股权证明共识机制中节点投票不积极和节点腐败的问题,提出一种基于配对制度的DPoS共识机制(delegated proof-of-stake based on matching mechanism,DPoS-M2)。根据节点属性值将节点分为独立节点、主节点和配基节点,通过主节点和配基节点配对增加节点间相互作用力,提高各类节点参与共识的积极性,从而降低系统中心化程度。采用类别评定模块,计算节点行为权重值并更新节点类别,使系统对节点的奖惩更具有针对性。当新节点加入系统时,运用马氏距离计算公式求出最需要该节点的社区,以保证社区动态且平衡运行。在仿真环境下,DPoS-M2在运行了80 min时,与DDPoS、DPoS-PI和DPoS相比,节点的参与度分别提高21.9%、8.7%和32.4%;出块数量分别提高63.2%、44.8%和11.6%;新节点参与率分别提高22.8%、25.5%和28.7%;恶意节点的剔除速度分别提高12%、32%和48%。实验结果表明,DPoS-M2能有效地提高节点的积极性和系统去中心化程度,加快出块速度,提高可扩展性,增强系统安全性。 In order to solve the problem of delegated proof-of-stake(DPoS)consensus mechanism that inactive node voting and node corruption,this paper proposed a DPoS consensus mechanism based on matching mechanism.According to the node attribute value,the nodes were divided into autonomy nodes,master nodes and ligand nodes.Through the pairing of the master node and the ligand node,it increased the interaction force between nodes,and improved the enthusiasm of all kinds of nodes to participate in the consensus,thereby reducing the degree of system centralization.It used the category evaluation module to calculate the node’s behavior weight value and updated the node category according to the node’s behavior,so that the system’s rewards and punishments for nodes were more targeted.When a new node joined the system,it used the Mahalanobis distance calculation formula to find the community that needed the node most to ensure the dynamic and balanced operation of the community.After 80 minutes of simulation,compared with DDPoS,DPoS-PI and DPoS algorithms,the nodes participation by DPoS-M2 increases by 21.9%,8.7%and 32.4%respectively;the number of blocks generated increases by 63.2%,44.8%and 11.6%respectively,the participation rate of new nodes increases by 22.8%,25.5%and 28.7%respectively,and the elimination speed of malicious nodes increase by 12%,32%and 48%respectively.The experiment results show that DPoS-M2 can effectively improve the enthusiasm of nodes and the degree of decentralization of the system,accelerate the speed of block generation,improve the expandability and enhance the security of the system.
作者 张雅萍 任秀丽 Zhang Yaping;Ren Xiuli(College of Information,Liaoning University,Shenyang 110036,China)
出处 《计算机应用研究》 CSCD 北大核心 2021年第10期2909-2914,共6页 Application Research of Computers
基金 辽宁省自然科学基金资助项目(201202089) 辽宁省教育厅资助项目(LYB201617)。
关键词 区块链 共识机制 授权股权证明 类别评定模块 马氏距离 blockchain consensus mechanism delegated proof-of-stake(DPoS) category evaluation module Mahalanobis distance
  • 相关文献

参考文献6

二级参考文献36

  • 1王飞跃.人工社会、计算实验、平行系统——关于复杂社会经济系统计算研究的讨论[J].复杂系统与复杂性科学,2004,1(4):25-35. 被引量:236
  • 2王飞跃.计算实验方法与复杂系统行为分析和决策评估[J].系统仿真学报,2004,16(5):893-897. 被引量:147
  • 3王飞跃,蒋正华,戴汝为.人口问题与人工社会方法:人工人口系统的设想与应用[J].复杂系统与复杂性科学,2005,2(1):1-9. 被引量:18
  • 4Jackson J E. A User's Guide to Principal Components. New York: John Wiley, 1996
  • 5Nomikos P, MacGregor J F. Multivariate SPC chart for monitoring batch processes. Technometrics, 1995,37(1): 41-59
  • 6Nomikos P, MacGregor J P. Monitoring batch processes using multi-way principal component analysis. American Institute of Chemical Engineers Journal, 1994, 40(8): 1361-1375
  • 7Kim D, Lee I B. Process monitoring based on probabilistic PCA. Chemometrics and Intelligent Laboratory Systems, 2003, 67(2): 109-123
  • 8Teppola P, Mujunen S P, Minkkinen P, Puijola T, Pursiheimo P. Principal component analysis, contribution plots and feature weights in the monitoring of sequential process data from a paper machine's wet end. Chemometrics and Intelligent Laboratory Systems, 1998, 44(1): 307-317
  • 9Chiang L H, Russell E L, Braatz R D. Fault Detection and Diagnosis in Industrial Systems. Berlin: Springer-Verlag, 2001
  • 10Chen J H, Liu J L. Mixture principal component analysis models for process monitoring. Industrial Engineering and Chemistry Research, 1999, 38(4): 1478-1488

共引文献2984

同被引文献46

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部