期刊文献+

Self-Normalized Moderate Deviation and Laws of the Iterated Logarithm Under G-Expectation 被引量:3

原文传递
导出
摘要 The sub-linear expectation or called G-expectation is a non-linear expectation having advantage of modeling non-additive probability problems and the volatilityuncertainty in finance.Let{Xn;n≥1}be a sequence of independent random vari-ables in a sub-linear expectation space(Ω,H,E^(^)).Denote S_(n)=∑_(k=1)^(n)Xk and=V_(n)^(2)=∑_(k=1)^(n)X_(k)^(2).In this paper,a moderate deviation for self-normalized sums,thatis,the asymptotic capacity of the event{Sn/Vn≥x_(n)}for x_(n)=o(√n),is found both for identically distributed random variables and independent but not necessarilyidentically distributed random variables.As an application,the self-normalized lawsof the iterated logarithm are obtained.A Bernstein's type inequality is also establishedfor proving the law of the iterated logarithm.
作者 Li-Xin Zhang
出处 《Communications in Mathematics and Statistics》 SCIE 2016年第2期229-263,共35页 数学与统计通讯(英文)
基金 Grants from the National Natural Science Foundation of China(No.11225104) 973 Program(No.2015CB352302) the Fundamental Research Funds for the CentralUniversities.
  • 相关文献

参考文献4

二级参考文献26

共引文献91

同被引文献7

引证文献3

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部