期刊文献+

前交叉韧带重建术后移植物应力的有限元分析 被引量:8

Finite element analysis of the graft stresses after anterior cruciate ligament reconstruction
在线阅读 下载PDF
导出
摘要 目的:探究前交叉韧带(anterior cruciate ligament,ACL)重建后移植物应力分布特征,为ACL重建的手术方案提供理论参考。方法:基于三维磁共振及CT影像,建立完整膝关节有限元模型,模型包括股骨、胫骨、腓骨、内侧副韧带、外侧副韧带、ACL、后交叉韧带;建立ACL重建后膝关节有限元模型,模型包括股骨、胫骨、腓骨、内侧副韧带、外侧副韧带、ACL移植物、后交叉韧带。模型采用线弹性材料属性,骨组织材料属性设置为弹性模量17 GPa,泊松比(Poisson’s ratio)为0.36;完整膝关节及ACL重建膝关节的模型中的韧带组织及ACL移植物的材料属性设置为弹性模量390 MPa,泊松比0.4;将股骨固定设置为模型边界条件,施加胫骨前向134 N的拉力为载荷条件,求解分析完整膝关节的ACL及重建术后的ACL移植物的拉应力、压应力、剪切应力、等效应力的受力状态。结果:重建后的ACL移植物的最大压应力(6.34 MPa)、等效应力(5.9 MPa)、剪切应力(1.83 MPa)均在前侧股骨端,与完整膝关节ACL最大压应力(8.77 MPa)、等效应力(8.88 MPa)、剪切应力(3.44 MPa)位置一致。移植物最大拉应力也出现在股骨端,但位置在后侧,与完整膝关节ACL最大拉应力位置一致,且ACL移植物最大拉应力的值仅为0.88 MPa,小于完整膝关节ACL的2.56 MPa。结论:ACL移植物压应力、等效应力、剪切应力最大值均在前侧股骨端,最大拉应力出现在股骨端后侧,均与完整膝关节ACL最大拉应力位置一致;ACL移植物的前侧部分承受力较大,后侧部分承受力较小,与ACL的生物力学特性相符合。 Objective:To explore the stress distribution characteristics of the graft after anterior cruciate ligament(ACL)reconstruction,so as to provide theoretical reference for the surgical plan of ACL reconstruction.Methods:Based on 3D MRI and CT images,finite element models of the uninjured knee joint and knee joint after ACL reconstruction were established in this study.The uninjured knee model included femur,tibia,fibula,medial collateral ligament,lateral collateral ligament,ACL and posterior cruciate ligament.The ACL reconstruction knee model included femur,tibia,fibula,medial collateral ligament,lateral collateral ligament,ACL graft and posterior cruciate ligament.Linear elastic material properties were used for both the uninjured and ACL reconstruction models.The elastic modulus of bone tissue was set as 17 GPa and Poisson’s ratio was 0.36.The material properties of ligament tissue and graft were set as elastic modulus 390 MPa and Poisson’s ratio 0.4.The femur was fixed as the boundary condition,and the tibia anterior tension of 134 N was applied as the loading condition.The stress states of the ACL of the intact joint and the ACL graft after reconstruction were solved and analyzed,including tension,pressure,shear force and von Mises stress.Results:The maximum compressive stress(6.34 MPa),von Mises stress(5.9 MPa)and shear stress(1.83 MPa)of the reconstructed ACL graft were all at the anterior femoral end.It was consistent with the position of maximum compressive stress(8.77 MPa),von Mises stress(8.88 MPa)and shear stress(3.44 MPa)in the ACL of the intact knee joint.The maximum tensile stress of the graft also appeared at the femoral end,but at the posterior side,which was consistent with the position of the maximum tensile stress of ACL of the uninjured knee joint.More-over,the maximum tensile stress of the graft was only 0.88 MPa,which was less than 2.56 MPa of ACL of the uninjured knee joint.Conclusion:The maximum compressive stress,von Mises stress and shear stress of the ACL graft are located in the anterior femoral end,and the maximum tensile stress is located in the posterior femoral end,which is consistent with the position of the maximum tensile stress of the ACL of the uninjured knee joint.The anterior part of ACL and the graft bore higher stresses than the posterior part,which is consistent with the biomechanical characteristics of ACL.
作者 任爽 时会娟 张家豪 刘振龙 邵嘉艺 朱敬先 胡晓青 黄红拾 敖英芳 REN Shuang;SHI Hui-juan;ZHANG Jia-hao;LIU Zhen-long;SHAO Jia-yi;ZHU Jing-xian;HU Xiao-qing;HUANG Hong-shi;AO Ying-fang(Department of Sports Medicine,Peking University Third Hospital,Institute of Sports Medicine of Peking University,Beijing Key Laboratory of Sports Injuries,Beijing 100191,China)
出处 《北京大学学报(医学版)》 CAS CSCD 北大核心 2021年第5期865-870,共6页 Journal of Peking University:Health Sciences
基金 国家自然科学基金(31900943、31900961) 北京大学医学部教育教学研究(2020YB44) 北京市自然科学基金课题(7202232)。
关键词 前交叉韧带重建 ACL移植物 有限元分析 应力分布 Anterior cruciate ligament reconstruction Anterior cruciate ligament graft Finite element analysis Stress distribution
  • 相关文献

参考文献3

二级参考文献21

  • 1Murrell G A C, Maddali S, Horovita L, et al. The effect of time course after anterior eruciate ligament injury in correlation with mensical and cartilage loss [J]. American Journal of Sports Medicine, 2001, 29(1) : 9 - 14.
  • 2Maria M, Barbiera F, Casto A, et al. Biomechanical correlations of lesions associated with traumatic diseases of the anterior curciate ligaments: analysis with magnetic resonance [J]. Radiology Medicine, 1996, 91(6): 693 - 699.
  • 3Benno M N, Walter H. Biomechanics of muscle skeletal system[M]. New York: Wiley, 1999.
  • 4DonahueT L H, Hull M L, Rashid M M, et al. A finite element model of the human knee joint for the study of tibio femoral contact [J].Journal of Biomechanical Engineering, 2002, 124:273-280.
  • 5Moglo K E, Shirazi Adl A. On the coupling between anterior and posterior cruciate ligament and knee joint response under anterior femoral drawer in flexion: a finite element study [J]. Clinical Biomechanics, 2003, 18: 751- 759.
  • 6Rabotnov Y N. On the equations of state for creep [J]. Progress in Applied Mechanics, 1963, 307 - 315.
  • 7Kachanov L M. Introduction to Continuum Damage Mechanics [M]. The Netherlands: Martinus Nijhoff Publishers, 1986.
  • 8Pena E, Calvo B, Martinez M A, et al. A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint [J].Journal of Biomechanics, 2006, 39(9) ; 1686 - 1701.
  • 9Fox R J, Harner C D, Sakane M, et al. Determination of the in situ forces in the human posterior cruciate ligament using robotic technology [J]. American Journal of Sports and Medicine, 1998, 26: 395-401.
  • 10Gabriel M T, Wong E K, Woo S L Y, et al. Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads [J]. Journal of Orthopaedics Research, 2004, 22(1) : 85 - 89.

共引文献19

同被引文献29

引证文献8

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部