摘要
针对光线追踪法是模拟火星太阳光照最有效的方法,但模拟精度由搜索半径的大小直接决定,进而影响火星地表可照时间模拟精度的问题。该文综合考虑纬度差异、地貌类型、地貌形态规模的影响,利用Hadoop分布式集群模拟火星地表可照时间,针对搜索半径对可照时间的影响进行时空分析,获取模拟火星不同地貌下可照时间所采用的最佳搜索半径,保障火星地表光照的模拟精度,且提高计算效率。结果表明:搜索半径对火星地表可照时间的影响呈时节分布的不对称性,受搜索半径影响最为严重的时节随纬度带的改变而更替;搜索半径对不同地貌下可照时间影响的效果不可一概而论,主要与地形起伏及地貌形态规模有关,但主体呈现撞击坑下的可照时间受搜索半径的影响最为持续、火山地貌下的可照时间所受的影响程度最重。
Ray-tracing method is the most effective method to simulate the solar illumination on Mars,but the simulation accuracy is directly determined by the size of the search radius,which will affect the simulation accuracy of the duration of possible sunshine on the surface of Mars.The influence of latitude difference,geomorphic type and geomorphic scale is comprehensively considered,and the duration of possible sunshine of Mars is simulated by Hadoop,the effect of search radius on duration of possible sunshine is analyzed,to explore the optimal search radius for the duration of possible sunshine under different landforms of Mars simulation,so as to ensure the simulation accuracy of Martian surface duration of possible sunshine and improve the computational efficiency.The results show:The effect of the search radius on the duration of possible sunshine shows an asymmetry in season distribution,and the season most affected by the search radius changes with the change of latitude zone.The effect of search radius on duration of possible sunshine under different landforms can not be generalized,which is mainly related to topographic relief and landform scale.However,the main part shows that the duration of possible sunshine under meteor crater is most continuously affected by the search radius,and the duration of possible sunshine under volcanic landforms is most affected by the search radius.
作者
郭连鹤
陈楠
GUO Lianhe;CHEN Nan(Key Lab for Spatial Data Mining and Information Sharing of Education Ministry,Fuzhou 350108,China;The Academy of Digital China(Fujian),Fuzhou University,Fuzhou 350108,China)
出处
《测绘科学》
CSCD
北大核心
2021年第9期157-167,共11页
Science of Surveying and Mapping
关键词
可照时间
搜索半径
地形遮蔽
数字高程模型
火星
duration of possible sunshine
search radius
terrain
digital elevation model
Mars