期刊文献+

基于SCADA参数关系的风电机组部件重要度分析 被引量:4

Component importance analysis of wind turbine based on SCADA parameter relations
在线阅读 下载PDF
导出
摘要 在风电机组部件重要度分析中,通常将机组性能状态简单划分为"正常运行"和"停机"两种,忽视其他中间状态,且大多依赖专家打分,主观性较强。为解决上述问题,文章提出一种基于SCADA参数关系的风电机组部件重要度分析方法。首先,对原始数据进行预处理,基于"风速-功率"多项式模型评估整机性能;然后,采用高斯过程回归拟合"风速-部件性能参数"基准关系,以偏离基准的程度来评估部件性能;最后,提出森林优化-K近邻回归方法,建立部件性能与整机性能的特征加权回归模型,根据最优特征权重确定部件重要度。基于公开数据集的实验证明了所提方法的有效性。 In the component importance analysis of wind turbine,the performance state is usually simply divided into"operating"and"hutdown",ignoring other intermediate states that actually exist.In addition,the analysis is highly dependent on expert scoring,bringing in strong subjectivity.In order to solve the above problems,a component importance analysis method of wind turbine based on SCADA parameter relations is proposed.First,the raw data are pre-processed and the turbine performance is evaluated based on polynomial model of"wind speed-power"relationship.Then,a Gaussian process regression is used to fit the benchmark relationship between"wind speed"and"component performance parameters",and the component performance is evaluated by the degree of deviation from the benchmark.Finally,a forest optimization-K nearest neighbor regression method is proposed to establish a feature-weighted regression model of component performance and turbine performance,and the component importance is determined according to the optimal feature weights.Experiments based on public data set demonstrate the effectiveness of the proposed method.
作者 程诗雨 刘航 曾天生 陈汉斯 王峥 褚学宁 Cheng Shiyu;Liu Hang;Zeng Tiansheng;Chen Hansi;Wang Zheng;Chu Xuening(Shanghai Jiao Tong University,Shanghai 200240,China;Zhengzhou University of Aeronautics,Zhengzhou 451015,China)
出处 《可再生能源》 CAS CSCD 北大核心 2021年第10期1335-1341,共7页 Renewable Energy Resources
基金 国家自然科学基金资助项目(51875345 51475290)。
关键词 风电机组 部件重要度 SCADA参数关系 性能评估 森林优化算法 wind turbine component importance SCADA parameter relations performance evaluation forest optimization algorithm
  • 相关文献

参考文献4

二级参考文献27

  • 1张毅.基于重要度划分的设备维修方式决策[J].兵工自动化,2005,24(6):23-24. 被引量:20
  • 2许树柏.层次分析法原理[M].天津:天津大学出版社,1988.160-165.
  • 3李俊峰,高虎,王仲颖,等.中国风电发展报告2013[R].北京:中国环境科学出版社,2013.
  • 4BERTLING L. Reliability-centered maintenance for wind turbines based on statistical analysis and practical experience I J ]. IEEE Transactions on Energy Conversion,2012,27 ( 1 ) : 184-195.
  • 5PIETERMAN R P,BRAAM H. Optimisation of maintenance strategies for offshore wind farms [ C ]// The Offshore 2011 Conference. Amsterdam, the Netherlands,2011:6-13.
  • 6BESNARD F, PATRIKSSON M, STROMBERG A. A stochastic model for opportunistic maintenance planning of offshore wind farms [ C ] //IEEE Transactions on Power Technology Conference. Trondheim, Norway,2011 : 1-8.
  • 7NILSSON J, BERTLING L. Maintenance management of wind power systems using condition monitoring systems- life cycle cost analysis for two case studies[J]. IEEE Transactions on Energy Conversion,2007,22 ( 1 ) :223-229.
  • 8张媛,熊小伏,周家启,胡志淳,王瑞祥.基于灰色模糊综合评判的断路器维修排序方法[J].电网技术,2008,32(8):21-24. 被引量:20
  • 9刘佳,王敏,顾煜炯,宋磊.基于TOPSIS重要度分析的风电场设备维修方式逻辑决策[J].可再生能源,2012,30(12):29-34. 被引量:10
  • 10王宝,刘青,王彬,杨振国.基于重要度的电弧炉炼钢系统维修决策[J].中南大学学报(自然科学版),2013,44(1):14-24. 被引量:8

共引文献33

同被引文献52

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部