摘要
为实现高精度温度传感,设计了一种基于游标效应和铝合金基底增敏的复合结构的光纤温度传感器。该传感器由空芯光纤和单模光纤形成的级联法布里-珀罗干涉仪(FPI)、与级联FPI串联的光纤布拉格光栅(FBG)和铝合金基底构成。利用三光束干涉理论、光束传播法、有限元分析,阐述了其反射光谱、传输光场、热力学等特性。通过控制空芯光纤和单模光纤的几何长度,可灵活地调整游标效应增敏倍数和温度测量分辨率。该复合结构的设计不仅可以测量温度的微小变化量,还可以测量温度的绝对值。实验结果表明,基于游标效应的级联FPI和FBG的温度灵敏度分别为138.4 pm/℃和37.4 pm/℃,传感器的温度重复性和快速响应性良好,可以广泛应用于高精度测量领域。
To achieve high-accuracy temperature sensing,this paper designed a fiber temperature sensor with a composite structure based on the vernier effect and aluminum alloy substrate sensitization.The sensor is composed of a cascaded Fabry-Perot interferometer(FPI)formed by splicing a hollow-core fiber and two single-mode fibers,a fiber Bragg grating(FBG)in series connection with the cascaded FPI,and an aluminum alloy substrate.Its characteristics such as reflection spectra,transmission field,and thermodynamics are expounded by the three-beam interference theory,the beam propagation method,and finite element analysis.By controlling the geometric lengths of the hollow-core fiber and the single-mode fiber,we can flexibly adjust the vernier effect sensitization multiplier and temperature measurement resolution.The composite structure was designed to measure not only small temperature changes but also the absolute values of temperatures.The experimental results show that the temperature sensitivity of the cascaded FPI and FBG based on the vernier effect is 138.4 pm/℃and 37.4 pm/℃,respectively,and the temperature repeatability and fast response of the sensor are good.The designed sensor can be widely applied to high-precision measurements.
作者
刘福禄
张钰民
庄炜
骆飞
祝连庆
Liu Fulu;Zhang Yumin;Zhuang Wei;Luo Fei;Zhu Lianqing(Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument,Beijing Information Science&Technology University,Beijing 100016 China;Beijing Laboratory of Optical Fiber Sensing and System,Beijing Information Science&Technology University,Beijing 100192 China)
出处
《光学学报》
EI
CAS
CSCD
北大核心
2021年第15期40-47,共8页
Acta Optica Sinica
基金
国家自然科学基金(61735002)
高等学校学科创新引智计划项目(D17021)
北京市自然科学基金项目(4212048)。