摘要
Epidemics are threatening public health and social development.Emerging as a green disinfectant,H_(2)O_(2)can prevent the breakout of epidemics in migration.Electrochemical H_(2)O_(2)production powered by renewable electricity provides a clean and decentralized solution for on-site disinfection.This review firstly discussed the efficacy of H_(2)O_(2)in disinfection.Then necessary fundamental principles are summarized to gain insight into electrochemical H_(2)O_(2)production.The focus is on exploring pathways to realize a highly efficient H_(2)O_(2)production.Progress in advanced electrocatalysts,typically single-atom catalysts for the two-electron oxygen reduction reaction(2e−ORR),are highlighted to provide high H_(2)O_(2)selectivity design strategies.Finally,a rational design of electrode and electrolytic cells is outlined to realize the on-site disinfection.Overall,this critical review contributes to exploiting the potentials and constraints of electrochemical H_(2)O_(2)generation in disinfection and pinpoints future research directions required for implementation.
流行性疾病贯穿整个人类历史,伴随全球人口流动,它们可能演变成大型流行病.时至今日,我们仍在见证已知和新生的病原体对人类历史格局的改变.在与流行性疾病的抗争中,诸如紫外线辐射、巴氏杀菌和化学氧化法等技术被用于病原体的消杀和抗体的研制.然而,这些技术在环境消毒方面存在诸多不利,譬如过长的消杀时间、昂贵的特殊设备以及伴生的环境污染.过氧化氢是一种环境友好的多功能氧化剂,其分解的最终产物是氧气和水,广泛用于伤口消毒、纸浆和纺织品漂白、废水废气处理、化学合成、半导体清洗以及洗涤剂.目前,过氧化氢的生产严重依赖于传统的蒽醌法,该技术由Riedl和Pfleiderer于1939年提出,并沿用至今.然而,蒽醌法能耗高,该技术仅在较大规模上经济可行.不稳定的过氧化氢溶液存在危险性,这对大宗过氧化氢的运输和存储提出了额外的挑战.电化学合成过氧化氢被认为可有效替代传统蒽醌法,其反应条件温和,所需反应物是环境中广泛存在的水和氧气;与可再生能源相结合,有望实现分布式原位生产过氧化氢.过氧化氢既可以通过两电子的水氧化反应生成,又可以经由两电子的氧还原反应产生.Berl等在上世纪30年代首次报道了经由两电子的氧还原反应合成过氧化氢,并随后在1991年将其商业化(亦即Huron-Dow法).自此,Huron-Dow法被广泛用于纸浆和纸张的漂白过程.最近,Huron-Dow法进一步演变为电子-芬顿工艺,并被广泛用于饮用水净化和污水处理.目前,涉及高活性和高选择性的电化学合成过氧化氢的优秀综述见诸各大期刊;但是鲜有综述探讨该技术在环境消毒方面的应用.为了探寻提升公共卫生安全的有效替代方法,本文探讨了在电催化制备过氧化氢在环境消毒方面的可行性.本文涵盖三个主题,从基础理论到实践两个层次探讨了该技术在实际应用中的可行性.首先,回顾了H_(2)O_(2)消杀病原体的机理;其次,讨论了影响电催化制备过氧化氢的关键因素,并对现有的用于两电子水氧化和氧还原的催化剂进行了系统性的评述;最后,讨论了电极和电解池的合理设计,以实现电催化制备过氧化氢在实际中的应用.本文试图为最终实现电催化制备过氧化氢在环境消毒,尤其是公共卫生领域,提供可寻的研究方向.