期刊文献+

卡尔曼滤波算法下电力通信自动化监测系统设计 被引量:5

Design of power communication automatic monitoring system based on Kalman filter algorithm
在线阅读 下载PDF
导出
摘要 为克服现有电力通信监测系统因噪声处理不佳导致的信号质量不高、系统负载能力差、耗时长等问题,将系统划分为数据层、网络层和应用层3个层次,采用卡尔曼滤波算法,设计了一种改进的电力通信自动化监测系统。在数据层通过设备采集电力通信数据,使用单元集成方式构建网元控制模块存储数据;通信传输信道将采集的数据传输至网络层,通过信道连接到应用层监测中心;基于数据服务器、交换器及工作站、路由器等设备构建数据处理模块、监测模块和管理模块,通过卡尔曼滤波算法完成数据处理,实现电力通信自动化监测系统设计。实验结果表明:该系统信号与干扰加噪声比(signal to interference plus noise ratio,SINR)较高,负载能力强,负载率低至40%左右,且平均运行耗时为8.0 s。 In order to overcome the problems of low signal quality,poor system load capacity and long time-consuming caused by poor noise processing in the existing power communication monitoring system,the system was divided into three levels,such as data layer,network layer and application layer,an improved power communication automatic monitoring system was designed.In the data layer,the power communication data was collected through the equipment,and the network element control module was constructed in the unit integration mode to store the data.The collected data was transmitted to the network layer,and then connected to the application layer monitoring center through the communication transmission chamnel;The data processing module,monitoring module and management module were constructed based on data server,switch,workstation,router and other equipment,the data processing was completed through Kalman filter algorithm to realize the design of power communication automatic monitoring system.The experimental results show that the system has high signal to interference plus noise ratio(SINR),strong load capacity,load rate as low as about 40%,and the average operation time is 8.0 s.
作者 王伟屹 赵晔 WANG Weiyi;ZHAO Ye(School of Physics and Electronic Information,Yan’an University,Yan’an 716000,Shaanxi,China)
出处 《西安工程大学学报》 CAS 2021年第5期50-55,共6页 Journal of Xi’an Polytechnic University
基金 国家自然科学基金(61801416) 延安大学博士科研启动项目(YDBK2016-16)。
关键词 卡尔曼滤波算法 电力通信 自动化监测 无迹变换 信号质量检测 Kalman filter algorithm power communication automatic monitoring no trace transformation signal quality detection
  • 相关文献

参考文献22

二级参考文献243

共引文献296

同被引文献72

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部