期刊文献+

团簇Ni_(4)P的成键性质

Bonding Properties of Cluster Ni_(4)P
在线阅读 下载PDF
导出
摘要 采用密度泛函理论,在B3LYP/Lanl2dz水平下对团簇Ni_(4)P的初始构型进行优化及频率计算,得到其稳定构型.从键长、键级以及原子间轨道杂化的角度对稳定构型的成键进行分析后得到以下结论:各构型Ni—Ni键与Ni—P键之间具有拮抗作用,Ni—Ni成键键级受空间构型的影响,而Ni—P成键键级不受空间构型及自旋多重度的影响.整体来看,Ni—P键为各构型稳定性的主要贡献者,且各构型的成键贡献不受自旋多重度的影响,Ni原子对轨道杂化的贡献大于P原子;各构型的Ni,P原子之间均存在d-p杂化和p-p杂化,此外,构型1^((4))~2^((2))的Ni,P原子之间还存在s-p-p杂化,构型3(4)和3(2)的Ni,P原子之间存在p-p-d杂化. Based on the density functional theory,the initial configurations of cluster Ni_(4)P were optimized and calculated at B3 LYP/Lanl2 dz level,and its stable configurations were obtained.The bond formation of stable configurations is analyzed from the bond length,bond order and orbital hybridization between atoms.The results are as follows:there is an antagonism between Ni—Ni bond and Ni—P bond,Ni—Ni bond formation is affected by spatial configuration.However,the bond order of Ni—P is not affected by the spatial configuration and spin multiplicity.On the whole,the Ni—P bond is the main contributor to the stability of each configuration,and the bonding contribution of each configuration is not affected by spin multiplicity;the contribution of Ni atom to orbital hybridization is greater than that of P atom;the d-p hybridization and p-p hybridization exist between the Ni and P atoms.In addition,there are s-p-p hybridization between Ni and P atoms of configuration 1^((4))~2^((2)),and p-p-d hybridization between Ni and P atoms of configuration 3^((4))and 3^((2)).
作者 吕孟娜 方志刚 廖薇 LYU Mengna;FANG Zhigang;LIAO Wei(School of Chemical Engineering,University of Science and Technology,Liaoning Anshan 114051,China)
出处 《河北师范大学学报(自然科学版)》 CAS 2021年第6期596-602,共7页 Journal of Hebei Normal University:Natural Science
基金 国家自然科学基金重点项目(51634004) 国家级大学生创新创业训练计划(201910146032,201910146034,201910146037,202010146020,202010146023) 辽宁省大学生创新创业训练计划(201910146039,202010146030)。
关键词 团簇Ni_(4)P 成键性质 稳定性 密度泛函理论 cluster Ni4P bonding property stability density functional theory
  • 相关文献

参考文献4

二级参考文献60

  • 1隋曼龄,卢柯.纳米晶体Ni-P合金晶粒微观结构的研究[J].金属学报,1994,30(9). 被引量:1
  • 2Klement, W. K., Willens, R.,Duwez, P. Nature 1960, 187, 869-870.
  • 3Hafner, J. J. Phys. Rev. 1980, 21(2), 406-426.
  • 4Gaskell, P. H. J. Non-Cryst. Solids, 1997, 222, 1-12.
  • 5Dai, W. L.,Qiao, M. H., Deng, J. E Appl. Surf. Sci. 1997, 120, 119-124.
  • 6Bohonyey, A., Kiss, L.E, Lovas, A., Gerocs, I., Huhn, G. J. Non-Cryst. Solids, 1998, 232-234, 490-496.
  • 7Yokoyama, A., Komiyama, M.,Inoue, H., Masumoto, T., Kimura, H. M. J. Catal. 1981, 68, 355-364.
  • 8Yokoyama, A., Komiyama, M., Inoue, H., Masumoto, T., Kimura, H. M. Acripta. Met. 1981, 15, 365-378.
  • 9Li, H. L., Luo, H. S., Zhang, L.J. Mole. Cata. A, Chem. 2003, 203, 267-275.
  • 10Philips, D. C., Sawhill, S. J., Self, R., Bussell, M. E. J. Catal. 2002, 207, 266-284.

共引文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部