期刊文献+

双模量梁动力响应的时域GD法求解 被引量:3

Time-domain GD Method for Solving the Dynamic Response of Bi-modulus Beams
在线阅读 下载PDF
导出
摘要 基于欧拉-伯努利梁模型,推出了双模量梁(拉压弹性模量不等)受迫振动控制微分方程.采用时域GD法(general differential method)求解和讨论了在均布交变载荷和均布突加载荷作用下的简支双模量梁的受迫振动问题.该方法直接在空间域和时间域分别使用GD法离散处理控制微分方程,得到求解其位移场的线性方程组,然后融入用GD法离散处理的边界条件和初始条件使问题得解.计算结果表明:随着简支双模量梁的压缩弹性模量与拉伸弹性模量的比值增大,其受迫振动的振幅随之减小. Based on Euler-Bernoulli beam model,the differential equations of forced vibration control of bimodular beams(with unequal elastic modulus in tension and compression)were derived.The forced vibration of simply supported bimodular beams under uniformly distributed alternating loads and uniformly distributed sudden loads was solved and discussed by using the general differential method in time domain.In this method,GD method was used to discretize the control differential equation directly in the space domain and time domain,respectively,and the linear equations for solving its displacement field were obtained.Then,the boundary conditions and initial conditions discretized by GD method were incorporated to solve the problem.The results show that with the increase of the ratio of compressive elastic modulus to tensile elastic modulus,the amplitude of forced vibration decreases.
作者 黄春林 彭建设 HUANG Chunlin;PENG Jianshe(School of Mechanical Engineering, Chengdu University, Chengdu 610106, China)
出处 《武汉理工大学学报(交通科学与工程版)》 2021年第5期945-949,共5页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
关键词 时域GD法 动力响应 双模量梁 受迫振动 time-domain GD method dynamic response bi-modulus beam forced vibration
  • 相关文献

参考文献8

二级参考文献59

共引文献25

同被引文献22

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部