期刊文献+

深度强化学习的无人作战飞机空战机动决策 被引量:14

Maneuver decision of UCAV in air combat based on deep reinforcement learning
在线阅读 下载PDF
导出
摘要 无人作战飞机(unmanned combat aerial vehicle,UCAV)在进行空战自主机动决策时,面临大规模计算,易受敌方不确定性操纵的影响。针对这一问题,提出了一种基于深度强化学习算法的无人作战飞机空战自主机动决策模型。利用该算法,无人作战飞机可以在空战中自主地进行机动决策以获得优势地位。首先,基于飞机控制系统,利用MATLAB/Simulink仿真平台搭建了六自由度无人作战飞机模型,选取适当的空战动作作为机动输出。在此基础上,设计了无人作战飞机空战自主机动的决策模型,通过敌我双方的相对运动构建作战评估模型,分析了导弹攻击区的范围,将相应的优势函数作为深度强化学习的评判依据。之后,对无人作战飞机进行了由易到难的分阶段训练,并通过对深度Q网络的研究分析了最优机动控制指令。从而无人作战飞机可以在不同的态势情况下选择相应的机动动作,独立评估战场态势,做出战术决策,以达到提高作战效能的目的。仿真结果表明,该方法能使无人作战飞机在空战中自主的选择战术动作,快速达到优势地位,极大地提高了无人作战飞机的作战效率。 When an unmanned combat aerial vehicle(UCAV)is making the decision of autonomous maneuver in air combat,it faces large-scale calculation and is susceptible to the uncertain manipulation of the enemy.To tackle such problems,a decision-making model for autonomous maneuver of UCAV in air combat was proposed based on deep reinforcement learning algorithm in this study.With this algorithm,the UCAV can autonomously make maneuver decisions during air combat to achieve dominant position.First,based on the aircraft control system,a six-degree-of-freedom UCAV model was built using MATLAB/Simulink simulation platform,and the appropriate air combat action was selected as the maneuver output.On this basis,the decision-making model for the autonomous maneuver of UCAV in air combat was designed.Through the relative movement of both sides,the operational evaluation model was constructed.The range of the missile attack area was analyzed,and the corresponding advantage function was taken as the evaluation basis of the deep reinforcement learning.Then,the UCAV was trained by stages from the easy to the difficult,and the optimal maneuver control command was analyzed by investigating the deep Q network.Thereby,the UCAV could select corresponding maneuver actions in different situations and evaluate the battlefield situation independently,making tactical decisions and achieving the purpose of improving combat effectiveness.Simulation results suggest that the proposed method can make UCAV choose the tactical action independently in air combat and reach the dominant position quickly,which greatly improves the combat efficiency of the UCAV.
作者 李永丰 史静平 章卫国 蒋维 LI Yongfeng;SHI Jingping;ZHANG Weiguo;JIANG Wei(School of Automation,Northwestern Polytechnical University,Xi'an 710029,China;Shaanxi Provincial Key Laboratory of Flight Control and Simulation Technology(Northwestern Polytechnical University),Xi'an 710029,China)
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2021年第12期33-41,共9页 Journal of Harbin Institute of Technology
基金 国家自然科学基金(62173277,62073266,61573286) 陕西省自然科学基金(2019JM-163,2020JQ-218)。
关键词 无人作战飞机 深度强化学习 空战自主机动决策 六自由度 优势函数 深度Q网络 unmanned combat aerial vehicle(UCAV) deep reinforcement learning autonomous maneuver decision in air combat six-degree-of-freedom advantage function deep Q network
  • 相关文献

参考文献9

二级参考文献57

  • 1王芳.蚁群算法的原理及其应用[J].潍坊教育学院学报,2005,18(2):70-72. 被引量:7
  • 2余谦,王先甲.基于粒子群优化求解纳什均衡的演化算法[J].武汉大学学报(理学版),2006,52(1):25-29. 被引量:37
  • 3HERBST W B.Dynamics of air combat[J].Aircraft,1982,20(7):594-598.
  • 4AUSTIN F,CARBONE G,FALCO M,et al.Game theory for automated maneuvering during air-to-air combat[J].J Guidance,1990,13(6):1143-1149.
  • 5王凌.智能优化算法及其应用[M].北京:清华大学出版社,2004.
  • 6Zhong Lin,Tong Ming'an,Zhong Wei,Zhang Shengyun.Sequential maneuvering decisions based on multi-stage influence diagram in air combat[J].Journal of Systems Engineering and Electronics,2007,18(3):551-555. 被引量:7
  • 7AUSTIN F,CARBONE G,MICHAEL Fet al.Game theory for automated maneuvering during airtoair combat[J].Journal of GuidanceControl and Dynamics199013(6):1143-1149.
  • 8GRIMM WWELL K H.Modeling air combat as differential gamerecent approaches and future requirements [M].Berlin:Springer1991.
  • 9PARSOPOULOS K EVRAHATIS M N.On the computation of all global minimizers through particle swarm optimization[J].IEEE Transactions on Evolutionary Computation,2004,8(3):211-224.
  • 10Galati D G.Game theoretic target assignment strategies in com- petitive multi-team systems[D].Pittsburgh:University of Pitts- burgh,2004.

共引文献193

同被引文献190

引证文献14

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部