期刊文献+

用于苹果叶病分类的领域自适应方法研究

Research on Domain Adaptive Method for Apple Leaf Disease Classification
在线阅读 下载PDF
导出
摘要 苹果叶部状态是反映苹果长势良好与否的晴雨表,及时准确地识别苹果叶病类型并采取防治措施对于保证苹果的产量和质量十分重要。不同时间采集的叶部数据样本往往因存在环境的变化,造成采样数据分布的差异,使得传统深度学习方法不能很好地解决跨域识别问题。本研究提出一种基于领域自适应的苹果叶病识别方法,通过对齐不同领域的数据分布,实现了苹果叶病的跨域分类识别。实验结果验证了本研究方法的有效性,为农业领域的跨域识别问题提供了新的研究思路。 The state of apple leaves is a barometer of whether the apple is growing well or not.It is very important to identify the types of apple leaf disease timely and accurately and take control measures to ensure the yield and quality of apple.The leaf data samples collected at different times often have environmental changes,resulting in differences in the distribution of sampling data,so that the traditional deep learning methods can not solve the problem of cross-domain recognition.In this study,a domain-adaptive apple leaf disease recognition method is proposed,which realizes the cross-domain classification and recognition of apple leaf disease by aligning the data distribution in different fields.The experimental results verify the effectiveness of this research method,and provide a new research idea for cross-domain identification in the field of agriculture.
作者 吴蔚 WU Wei
出处 《智慧农业导刊》 2021年第12期9-11,共3页 JOURNAL OF SMART AGRICULTURE
基金 泰山学院引进人才科研启动基金项目资助(编号:Y-01-2018006)。
关键词 深度学习 领域自适应 苹果叶病识别 deep learning domain adaptation apple leaf disease recognition
  • 相关文献

参考文献1

二级参考文献14

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部