期刊文献+

基于深度残差网络的光伏故障诊断模型研究 被引量:10

A fault diagnosis model of distributed photovoltaic power stations based on deep residual network
在线阅读 下载PDF
导出
摘要 分布式光伏电站的部署环境较为复杂,在实际运行中难免会产生多种故障。针对上述问题,提出了一种基于深度残差网络结构的分布式光伏电站故障诊断模型,对光伏电站的设备运行时序数据进行分析处理,实现对故障类别的快速准确判断。该模型使用一维卷积核感知时序数据特征,通过多级卷积结构提升模型的诊断能力,并采用残差结构解决模型深度增加造成的梯度消失问题,加速了深度模型的训练。光伏电站的测试数据实验结果表明,提出的模型相较于多种常见的智能模型具有较高的故障诊断准确度。该模型的推广使用不仅可以大幅减少光伏电站故障巡检投入,而且还能够提高光伏电站故障诊断效率。 The deployment environment of distributed photovoltaic power plants is relatively complicated,and many kinds of faults inevitably occur during the actual operation.In order to solve the above problem,this paper proposes a fault diagnosis model of distributed photovoltaic power stations based on deep residual network.It analyzes and processes the sequence data of equipment operation,and achieves rapid and accurate judgment of fault categories.This model applies a one-dimensional convolution kernel to perceive the characteristics of time series data.Then,it uses a multi-level convolution structure to increase the diagnostic ability.Finally,the residual network is utilized to solve the problem of gradient disappearance caused by the increase of model depth,and accelerate the training of the deep model.The experimental results based on the power station test data show that the residual network model achieves higher fault diagnosis accuracy than several state-of-the-art intelligent models.The application of this model can not only greatly reduce the investment in fault inspection of photovoltaic power plants,but also improve the efficiency of fault diagnosis of photovoltaic power plants.
作者 谢祥颖 刘虎 王栋 冷彪 XIE Xiang-ying;LIU Hu;WANG Dong;LENG Biao(School of Computer Science and Engineering,Beihang University,Beijing 100191;Department of Strategic Development,State Grid Electronic Commerce Co.,Ltd.,Beijing 100053;Department of the Internet,State Grid Corporation of China,Beijing 100031;Department of Digital Technology,State Grid Electronic Commerce Co.,Ltd.,Beijing 100053,China)
出处 《计算机工程与科学》 CSCD 北大核心 2021年第12期2223-2230,共8页 Computer Engineering & Science
基金 国家重点研发计划(2018YFB1500800) 国家电网有限公司科技项目(SGTJDK00DYJS2000148) 2020年电商公司自建科技项目(1700/2020-72001B)。
关键词 故障诊断 残差网络 深度学习 人工智能 fault diagnosis residual network deep learning artificial intelligence
  • 相关文献

参考文献9

二级参考文献54

  • 1丁坤,冯莉,王祥,覃思宇,翟泉新.小型光伏系统故障诊断方法研究[J].电网与清洁能源,2015,31(5):74-78. 被引量:4
  • 2宫改云,高新波,伍忠东.FCM聚类算法中模糊加权指数m的优选方法[J].模糊系统与数学,2005,19(1):143-148. 被引量:81
  • 3MartinT Hagan HowardB Demuth MarkH Beale 戴葵 等译.神经网络设计[M].北京:机械工业出版社,2002..
  • 4L.S.Milor.A tutorial introduction to research on analog and mixed-signal circuit testing.IEEE Trans.Circuits Syst.II.,1998,45(10):1389~1407.
  • 5P.Duhamel.Automatic test generation techniques for analog circuits and systems:A review.IEEE Trans.Circuits Syst.,1979,26(7):411~439.
  • 6F.Aminian, M.Aminian.Analog fault diagnosis of actual circuits using neural networks.IEEE Trans.Instr & Meas.,2002,51(3):544~550.
  • 7F.Cabral Jr.,Y.Teruya.Using MLPS for fault analysis in analog circuits.IEEE Pro.Circuits Syst.,1995,2:1172~1174.
  • 8斳蕃.神经计算智能基础原理·方法.成都:西南交通大学出版社,2000.
  • 9刘蕊洁,张金波,刘锐.模糊c均值聚类算法[J].重庆工学院学报(自然科学版),2008,22(2):139-141. 被引量:37
  • 10孙发圣,肖怀铁.基于K最近邻的支持向量机快速训练算法[J].电光与控制,2008,15(6):44-47. 被引量:5

共引文献120

同被引文献99

引证文献10

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部