期刊文献+

基于无人机图像的羊群密集计数算法研究 被引量:7

Algorithm of Sheep Dense Counting Based on Unmanned Aerial Vehicle Images
原文传递
导出
摘要 羊群羊只计数是畜牧生产过程中较为耗时费力的环节,在草原畜牧业中,统计羊只数量有助于过度放牧监测和草原生态评估。采用无人机(UAV)获取航拍图像,制作了羊群密集计数(USC)数据集,为羊群密集计数研究提供数据支持。在USC数据集上,对MCNN、CSRNet、SFANet、Bayesian Loss网络模型进行了实验。实验结果表明:由于遮挡,羊群的不规则分布,羊群大小、形状、密度等方面的巨大变化,MCNN、CSRNet、SFANet模型将假设的高斯核应用于点标注计算真值密度图,很难达到高质量;而Bayesian Loss模型提出的Bayesian损失函数对每只羊标注点的计数期望进行监督,取得了较好的计数效果,密度图平均绝对误差(MAE)为3.56,均方误差(MSE)为5.46,平均相对误差(MRE)为1.86%,可为草原羊群密集计数提供有益参考。 It is a time-consuming and laborious task to manually count the number of sheep in the process of pastoral livestock production.Counting the number of sheep in grassland animal husbandry has been helpful for overgrazing monitoring and grassland ecology assessment.A unmanned aerial vehicle(UAV)is used to obtain aerial images,and a UAV sheep counting(USC)dataset is made to provide data support for the study of flock dense counting.Based on the USC dataset,experiments with network models,included MCNN,CSRNet,SFANet,and Bayesian Loss are carried out.The experimental results show that due to occlusion,irregular distribution of sheep,great changes in sheep size,shape,and density,MCNN,CSRNet,and SFANet models apply the assumed Gaussian kernel to point labeling to calculate the truth density map,which are difficult to achieve high quality.However,the Bayesian loss function proposed by Bayesian Loss model supervises the counting expectation of each sheep’s labeling points.The average absolute error(MAE)of the density map obtained by the Bayesian Loss model is 3.56,the mean square error(MSE)is 5.46,and the average relative error(MRE)is 1.86%,which provides a useful reference for the dense counting of grassland sheep.
作者 赵建敏 李雪冬 李宝山 Zhao Jianmin;Li Xuedong;Li Baoshan(School of lnformatiou Engineering,Imner Mongolia University of Science&Technology,Baotou,lner Mongolia 014010,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2021年第22期212-221,共10页 Laser & Optoelectronics Progress
基金 内蒙古自然科学基金(2019MS06021,2019LH06006) 内蒙古自治区科技重大专项(2019ZD025)。
关键词 图像处理 卷积神经网络 密集计数 羊群计数 密度估计 无人机 image processing convolutional neural network dense counting sheep counting density estimation unmanned aerial vehicle
  • 相关文献

参考文献4

二级参考文献31

  • 1Wu B, Nevatia R. Detection of multiple, p~rtially occluded humans in a single image by Bayesian combination of edgelet part detectors. In: Proceedings of the 10th IEEE Inter- national Conference on Computer Vision. Beijing, China: IEEE. 2005. 90-97.
  • 2Zhao T, Nevatia R, Wu B. Segmentation and tracking of multiple humans in crowded environments. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 2008, 30(7): 1198--1211.
  • 3Chan A B, Liang Z S J, Vasconcelos N. Privacy preserving crowd monitoring: counting people without people models or tracking. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, AK: IEEE. 2008. 1-7.
  • 4Chan A B, Vasconcelos N. Counting people with low-level features and Bayesian regression. IEEE Transactions on Im- age Processing, 2012, 21(4): 2160-2177.
  • 5Idrees H, Saleemi I, Seibert C, Shah M. Multi-source multi- scale counting in extremely dense crowd images. In: Pro- ceedings of the 2013 IEEE Conference on Computer Vi- sion and Pattern Recognition. Portland, USA: IEEE, 2013. 2547-2554.
  • 6Lempitsky V, Zisserman A. Learning to count objects in images. In: Proceedings of Advances in Neural Informa- tion Processing Systems. Vancouver, Canada: NIPS, 2010. 1324-1332.
  • 7Ma W, Huang L, Liu C. Crowd density analysis using co- occurrence texture features. In: Proceedings of the 5th IEEE International Conference on Computer Sciences and Conver- gence Information Technology. Seoul, Korea: IEEE, 2010. 170-175.
  • 8Kong D, Gray D, Tao H. A viewpoint invariant approach for crowd counting. In: Proceedings of the 18th IEEE In- ternational Conference on Pattern Recognition. Hong Kong, China: IEEE, 2006. 1187-1190.
  • 9Chen K, Loy C C, Gong S G, Xiang T. Feature mining for localised crowd counting. In: Proceedings of the 23rd British Machine Vision Conference. Surrey, British: BMVA Press, 2012. 1-3.
  • 10Ryan D, Denman S, Sridharan S, Fookes C. An evaluation of crowd counting methods, features and regression mod- els. Computer Vision and Image Understanding, 2015, 180: 1-17.

共引文献58

同被引文献45

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部