期刊文献+

A DDoS Attack Information Fusion Method Based on CNN for Multi-Element Data 被引量:1

在线阅读 下载PDF
导出
摘要 Traditional distributed denial of service(DDoS)detection methods need a lot of computing resource,and many of them which are based on single element have high missing rate and false alarm rate.In order to solve the problems,this paper proposes a DDoS attack information fusion method based on CNN for multi-element data.Firstly,according to the distribution,concentration and high traffic abruptness of DDoS attacks,this paper defines six features which are respectively obtained from the elements of source IP address,destination IP address,source port,destination port,packet size and the number of IP packets.Then,we propose feature weight calculation algorithm based on principal component analysis to measure the importance of different features in different network environment.The algorithm of weighted multi-element feature fusion proposed in this paper is used to fuse different features,and obtain multi-element fusion feature(MEFF)value.Finally,the DDoS attack information fusion classification model is established by using convolutional neural network and support vector machine respectively based on the MEFF time series.Experimental results show that the information fusion method proposed can effectively fuse multi-element data,reduce the missing rate and total error rate,memory resource consumption,running time,and improve the detection rate.
出处 《Computers, Materials & Continua》 SCIE EI 2020年第4期131-150,共20页 计算机、材料和连续体(英文)
基金 This work was supported by the Hainan Provincial Natural Science Foundation of China[2018CXTD333,617048] National Natural Science Foundation of China[61762033,61702539] Hainan University Doctor Start Fund Project[kyqd1328] Hainan University Youth Fund Project[qnjj1444].
  • 相关文献

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部