期刊文献+

基于改进的Yolo v3模型的设备状态检测方法 被引量:9

Device State Detection Method Based on Improved Yolo v3 Model
原文传递
导出
摘要 提出一种基于改进的Yolo v3模型的设备状态检测方法,以实现精准的信号灯检测.工作流程为:(1)通过图像采集设备获取信号灯图像并预处理:(2)通过改进的Yolo v3模型进行信号灯检测.其中改进的Yolo v3模型增加了特征图的加权融合步骤,提高了对小目标检测识别的性能.实验结果表明,相比于原始Yolo v3模型.采用改进的Yolo v3模型进行信号灯检测识别时能够取得更高的交并比,同时,模型的召回率和精度也有相应提升. A device state detection method was proposed based on improved Yolo v3 model to achieve accurate signal light detection.The entire workflow included two steps:(1)To obtain the image of the signal light through the image acquisition device and normalize it;(2)To perform signal light detection with the improved Yolo v3 model.The improved Yolo v3 model employed weighted fusion of feature maps on three scales to improve its performance in the field of small target detection and recognition.The experiment results showed that comparing with the original Yolo v3 model,the improved model could achieve a higher intersection over union for signal light detection and recognition,as well as recall and accuracy.
作者 王鑫 曾愚 魏怀灏 李嘉周 吴斗 范玉强 Wang Xin;Zeng Yu;Wei Huaihao;Li Jiazhou;Wu Dou;Fan Yuqiang(Information and Communication Company,State Grid Sichuan,Chengdu 610041,China)
出处 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第6期7-11,共5页 Acta Scientiarum Naturalium Universitatis Nankaiensis
关键词 信号灯检测: Yolo v3模型 小目标检测 神经网络 signal light detection Yolo v3 model small target detection neural network
  • 相关文献

参考文献5

二级参考文献41

  • 1黄志勇,孙光民,李芳.基于RGB视觉模型的交通标志分割[J].微电子学与计算机,2004,21(10):147-148. 被引量:40
  • 2管海燕,郭建星.常用图像边缘检测算子定位精度对比研究[J].测绘与空间地理信息,2005,28(1):20-24. 被引量:15
  • 3段瑞玲,李庆祥,李玉和.图像边缘检测方法研究综述[J].光学技术,2005,31(3):415-419. 被引量:382
  • 4Omachi M, Omachi S. Traffic light detection with color and edge information[C]//IEEE Intelligent Vehicles Symposium. Washington, DC: IEEE Press, 2009:284-287.
  • 5Chunhe Y U, Ying Bai. A traffic light detection method [C]//Proceedings of 2010 International Colloquium on Computing, Communication, Control, and Management Yangzhou. 2010:734-737.
  • 6de Charette R, Nashashibi F. Real time visual traffic lights recognition based on spot light detection and adaptive traffic lights templates [C]//IEEE Intelligent Vehicles Symposium. Washington, DC: IEEE Press, 2009:358-363.
  • 7Estable S, Schick J, Stein F, et al. A realtime traffic sign recognition system[C]//Proc of Intelligent Vehicles, 1994 :213-218.
  • 8Gonzalezrc,Woodsre,Eddinssl,阮秋琦,译.数字图像处理:Matlab版[M].北京:电子工业出版社,2007..
  • 9Tsaid M, Lin C T. Fast normalized cross correlation for defect detection [J]. Pattern Recognition Letters, 2003,24(15):2625-2631.
  • 10胡晓军,徐飞. Matlab应用图像处理[M].西安:西安电子科技大学出版社,2011.

共引文献84

同被引文献99

引证文献9

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部