期刊文献+

Deep learning for the internet of things:Potential benefits and use-cases

在线阅读 下载PDF
导出
摘要 The massive number of sensors deployed in the Internet of Things(IoT)produce gigantic amounts of data for facilitating a wide range of applications.Deep Learning(DL)would undoubtedly play a role in generating valuable inferences from this massive volume of data and hence will assist in creating smarter IoT.In this regard,exploring the potential of DL for IoT data analytics becomes highly crucial.This paper begins with a concise discussion on the Deep Neural Network(DNN)and its different architectures.The potential benefits that DL will bring to the IoT are also discussed.Then,a detailed review of DL-driven IoT use-cases is presented.Moreover,this paper formulates a DL-based model for Human Activity Recognition(HAR).It carries out a performance comparison of the proposed model with other machine learning techniques to delineate the superiority of the DL model over other techniques.Apart from enlightening the potential of DL in IoT applications,this paper will serve as an impetus to encourage advanced research in the realm of DL-driven IoT applications.
出处 《Digital Communications and Networks》 SCIE CSCD 2021年第4期526-542,共17页 数字通信与网络(英文版)
  • 相关文献

参考文献3

二级参考文献53

  • 1Akaike H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6): 716-723.
  • 2Ardekani M R M. 2013. Off- and on-ground GPR techniques for field-scale soil moisture mapping. Geoderma, 200-201:55-66.
  • 3Avolio M V, Di Gregorio S, Lupiano V, et al. 2013. SCIDDICA-SS3: a new version of cellular automata model for simulating fast moving landslides. Journal of Supercomputing, 65(2): 682-696.
  • 4Bertoldi G, Della Chi,esa S D, Notarnicola C, et al. 2014. Estimation of soil moisture patterns in mountain grasslands by means of SAR RADARSAT2 images and hydrological modeling. Journal of Hydrology, 516: 245-257.
  • 5Brocca L, Morbidelli R, Melone F, et al. 2007. Soil moisture spatial variability in experimental areas of central Italy. Journal of Hydrology, 333(2--4): 356-373.
  • 6Brocca L, Melone F, Moramarco T, et al. 2010. Spatial-temporal variability of soil moisture and its estimation across scales. Water Resources kesearch, 46(2): W02516, doi: 10.1029/2009WR008016.
  • 7Cervarolo G, Mendicino G, Senatore A. 2010. A coupled ecohydrological-three-dimensional unsaturated flow model describing energy, H20 and CO2 fluxes. Ecohydrology, 3(2): 205-225.
  • 8D'Ambrosio D, Iovin." G, Spataro W, et al. 2007. A macroscopic collisional model for debris-flows simulation. Environmental Modelling & Softgare, 22(10): 1417-1436.
  • 9Delbari M, Afrasiab P, Loiskandl W. 2009. Using sequential Gaussian simulation to assess the field-scale spatial uncertainty of soil water content. CATENA, 79(2): 163 169.
  • 10D'Odorico P, Rodrigaez-Iturbe I. 2000. Space-time self-organization of mesoscale rainfall and soil moisture. Advances in Water Resources, 23(4): 349-357.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部