期刊文献+

应用量子粒子群算法优化神经网络的数据库重复记录检测 被引量:1

Using Quantum Particle Swarm to Optimize Database Duplicate Record Detection Based on Neural Network
在线阅读 下载PDF
导出
摘要 神经网络的连接阈值以及权值直接影响数据库重复记录的检测效果,当前方法无法找到最优的神经网络的连接阈值和权值,导致数据库重复记录检测偏差比较大,并且数据库重复记录检测效率低,为了获得更优的数据库重复记录检测结果,提出了量子粒子群算法优化神经网络算法的数据库重复记录检测方法。首先分析当前数据库重复记录检测研究进展,并提取数据库重复记录检测特征向量,然后采用BP神经网络对数据库重复记录检测训练样本进行学习,采用量子粒子群算法确定最优连接阈值和权值,建立理想的数据库重复记录检测模型,最后进行了数据库重复记录检测仿真实验。结果表明,这种方法是一种准确率高、效率高的数据库重复记录检测方法,数据库重复记录检测效果要明显优于其它方法。 The threshold and weight of neural network directly affect the detection effect of repeated records in database.The current methods cannot find the optimal threshold and weight of neural network,which leads to a large deviation in the detection of database duplicate records,and the detection efficiency of database duplicate records is low.In order to obtain better detection results of repeated records in database,quantum particles are proposed.Group algorithm optimizes the database duplicate record detection of neural network algorithm.Firstly,the current research progress of database duplicate record detection is analyzed,and the feature vector of database duplicate record detection is extracted.Then,BP neural network is used to learn the training samples of database duplicate record detection,and quantum particle swarm optimization algorithm is used to determine the optimal connection threshold and weight,and an ideal database duplicate record detection model is established.Finally,the database duplicate record detection is carried out by the detection simulation experiment.The results show that this method is a high accuracy and efficiency method of database duplicate records detection,and the detection effect of database duplicate records is obviously better than other methods.
作者 徐亮 XU Liang(Information Department, Lushan Rehabilitation and Recuperation Center of PLA, Jiujiang 332000, China)
出处 《微型电脑应用》 2022年第1期142-144,149,共4页 Microcomputer Applications
关键词 数据库记录 重复检测 连接权值 量子粒子群算法 database record duplicate detection connection weights quantum particle swarm optimization algorithm
  • 相关文献

参考文献13

二级参考文献87

  • 1韩京宇,徐立臻,董逸生.一种大数据量的相似记录检测方法[J].计算机研究与发展,2005,42(12):2206-2212. 被引量:32
  • 2贺玲,吴玲达,蔡益朝.高维空间中数据的相似性度量[J].数学的实践与认识,2006,36(9):189-194. 被引量:20
  • 3Dean J,Ghemawat S.MapReduce:simplified data processing on large clusters[C]//In Proceedings of the 6th Symposium on Operating Systems Design and Implementation.New York:ACM,2004:107-113.
  • 4DEAN J,GHEMAWAT S.MapReduce:simplified data processing on large clusters[C] // In Proceedings of the 6th Symposium on Operating Systems Design and Implementation,New York:NY,2004.
  • 5李星毅,包从剑,施化吉.数据仓库中的相似重复记录检测方法[J].电子科技大学学报,2007,36(6):1273-1277. 被引量:25
  • 6Jain A K,Murty M N,Flynn P J. Data clustering:a re view[J]. ACM Comput Surv,1999,31(3):264.
  • 7Jain A K,Duin R P W, Mao J C. Statistical pattern recognition:a review[J]. IEEE Trans Pattern Analysis Machine Intelligence, 2000,22 ( 1 ) : 4.
  • 8Levenshtein V I. Binary codes capable of correcting de- letions, insertions and reversals [J]. Soviet Physics- Doklady, 1966,10(8) :707.
  • 9Pan J S,Qiao Y L,Sun S H. A fast K nearest neigh- bors classification algorithm[J]. IEICE Trans Funda- mentals of Electronics Communications & Computer Sciences, 2004,87 (4) : 961.
  • 10Ahmed K E,Panagiotis G I, Vassilios S V. Duplicate record detection., a survey[J]. IEEE Trans Knowledge Data Engineering, 2007,19 (1) : 1.

共引文献72

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部