期刊文献+

冷辐射板结露初期液滴生长影响因素研究 被引量:4

Influences of droplets growth at initial stage of condensing on cold radiation plate
在线阅读 下载PDF
导出
摘要 辐射空调系统冷辐射板夏季运行极易发生结露现象,严重影响其工程应用,对冷辐射板表面结露时液滴生长过程的研究十分必要。基于传热学与分子动力学建立液滴生长模型,通过MATLAB迭代运算,得到液滴半径随时间的变化规律,分析冷辐射板材料特性、工作条件以及空气环境变化对液滴生长过程的影响。结果表明:液滴的曲率半径主要受环境温湿度、冷辐射板基底温度的影响,其次受表观接触角的影响;冷辐射板材料的导热系数范围在155-393 W/(m·K)、冷辐射板基底厚度小于2 mm、冷辐射板表面微结构高度在5 nm-50μm范围内时对液滴生长的影响均可以忽略。 When the radiation air conditioning system is running in summer,the cold radiation plate is prone to condensation,which can seriously affect its engineering application.It is necessary to study the process of droplet condensation on the surface of cold radiation plate.A droplet growth model based on heat transfer and molecular dynamics was established,and the influences of material characteristics,working conditions and air environment on the droplet growth process were analyzed by MATLAB.The results show that the droplet curvature radius is affected by the cold radiation plate base temperature,the air temperature and relative humidity.Surface contact angle has a slight effect on the droplet growth.When the thermal conductivity of cold radiation plate is in the range of 155 W/(m·K)to 393 W/(m·K),the thickness of cold radiation plate is less than 2 mm,and the micro-structural height is in the range of 5 nm to 50μm,its influences can be ignored.
作者 梁绮祯 丁云飞 冯永明 LIANG Qi-zhen;DING Yun-fei;FENG Yong-ming(School of Civil Engineering,Guangzhou 510006,Guangdong Province,China;Guangzhou Provincial Key Laboratory of Building Energy Efficiency and Application Technologies,Guangzhou University,Guangzhou 510006,Guangdong Province,China)
出处 《化学工程》 CAS CSCD 北大核心 2021年第10期43-47,53,共6页 Chemical Engineering(China)
基金 国家自然科学基金资助项目(51878187)。
关键词 冷辐射板 结露 液滴生长 传热 分子动力学 cold radiation plate condensation droplets growth heat transfer molecular dynamics
  • 相关文献

参考文献4

二级参考文献22

  • 1Smithsonian.Smithsonian Meteorological Tables[S].Washington:Smithsonian Institution.1984.
  • 2ASHRAE,ASHRAE Handbook[Z],1998,refrigeration.
  • 3Hyland,R.W.and A.Wexler.Formulations for the Thermodynamic Properties of the saturated Phases of H2O from 173.15K to 473.15K[J].ASHRAE Trans,1983,89(2A),500-519.
  • 4Buck.Arden L.New equations for computing vapor pressure and enhancement factor[J].Journal of Applied Meteorology.1981,20 (12):1527-1532.
  • 5Marti,J.and K Mauersberger.A survey and new measurements of ice vapor pressure at temperatures between 170 and 250 K[J].Geophys.Res.Lett.,199320(10):363-366.
  • 6Cassie A B D,Baxter S.Wettability of porous surfaces. Transactions of the Faraday Society . 1944
  • 7Young T.An Essay on the Cohesion of Fluids. Philosophical Transactions . 1805
  • 8Lingyan Huang,Zhongliang Liu,Yaomin Liu,Yujun Gou.Preparation and anti-frosting performance of super-hydrophobic surface based on copper foil[J]. International Journal of Thermal Sciences . 2010 (4)
  • 9Sung Jhee,Kwan-Soo Lee,Woo-Seung Kim.Effect of surface treatments on the frosting/defrosting behavior of a fin-tube heat exchanger[J]. International Journal of Refrigeration . 2002 (8)
  • 10C. NEINHUIS,W. BARTHLOTT.Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces[J]. Annals of Botany . 1997 (6)

共引文献80

同被引文献64

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部