期刊文献+

基于GAN的光伏逆变器数据异常检测技术 被引量:14

Abnormal detection technology of photovoltaic inverter data based on GAN
在线阅读 下载PDF
导出
摘要 随着实际环境中实时传感器数据的增加,定位异常情况变得越来越困难。同时,在基于图像的异常检测领域,生成对抗网络因其能够对复杂的高维图像分布进行建模而得到发展。为了能够精准快速地定位光伏发电系统中光伏逆变器的异常,提出了一种新的基于GAN的异常检测和定位框架。并将多变量时间序列利用角场转换为一系列二维图像,以此利用编码器和解码器的结构。特别是在一系列图像中采用卷积长短期记忆网络的编码器,保证了对每个时间序列数据的时间信息以及各变量之间的相关信息进行提取。最后通过执行异常评分函数来检测和定位异常,并通过相关实验证明了此方法在实际光伏逆变器数据异常检测任务中的有效性。 With the increase of real-time sensor data in the actual environment, it becomes more and more difficult to locate an abnormal situation. At the same time, in the field of image-based anomaly detection, generative adversarial networks(GAN) have been developed because of their ability to model complex high-dimensional image distribution. In order to accurately and quickly locate an abnormality of a photovoltaic inverter in a photovoltaic power generation system, a new abnormal detection and location framework based on GAN is proposed. The multi-variable time series is transformed into a series of two-dimensional image using the angle field, and a structure of encoder and decoder is used. Particularly for a series of images, a convolutional long-term and short-term memory network encoder is used to ensure the extraction of the time information of each time series data and the relevant information between variables. Finally, the anomaly can be detected and located by executing the anomaly score function, and the relevant experiments prove the effectiveness of this method in the actual photovoltaic inverter data anomaly detection task.
作者 周嘉琪 毕利 ZHOU Jiaqi;BI Li(School of Information Engineering,Ningxia University,Yinchuan 750021,China)
出处 《电力系统保护与控制》 CSCD 北大核心 2022年第1期133-140,共8页 Power System Protection and Control
基金 宁夏自然科学基金项目资助(2020AAC03034) 西部一流大学科研创新项目资助(ZKZD2017005)。
关键词 异常检测 光伏逆变器 生成对抗网络 卷积长短期记忆神经网络 anomaly detection photovoltaic inverter GAN ConvLSTM
  • 相关文献

参考文献11

二级参考文献136

共引文献382

同被引文献224

引证文献14

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部