期刊文献+

基于协同过滤算法的高校社团推荐系统的设计与实现 被引量:1

Design and Implementation of College Clubs Recommendation System based on Collaborative Filtering Algorithm
在线阅读 下载PDF
导出
摘要 高校中的社团较多,如何能让大学生快速地找到感兴趣的社团,成为社团管理者面临的主要问题。为了向大学生推荐可能喜欢的社团,本项目通过基于协同过滤的推荐算法,找到共同出现的频率来计算语义的相似度,并通过计算空间向量的夹角余弦值进而计算文本之间的相似度,能够在提高社团管理者工作效率的同时,为需要加入社团的学生和对社团文化有浓厚兴趣的学生提供更加全面的信息。实验结果表明,当推荐项目数量为10时,该方法的召回率、准确率和Fl值分别提高了12.81%、7.65%和14.51%,表明基于协同过滤的推荐算法可有效提高推荐结果。 There are many clubs in colleges and universities.How to make college students quickly find clubs of their interests has become the main problem faced by club managers.In order to recommend clubs that college students might like,this paper proposes to use a collaborative filtering recommendation algorithm to find the frequency of common occurrences for calculating semantic similarity.The similarity between texts is calculated by calculating the cosine of the space vector angle.It can not only improve the work efficiency of club managers,but also provide more comprehensive information for students who need to join the club and students who are very interested in club culture.Experimental results show that when the number of recommended items is 10,the recall rate,the accuracy rate and Fl value of this method are increased by 12.81%,7.65%and 14.51%respectively,indicating that the recommendation algorithm based on collaborative filtering effectively improves recommendation results.
作者 骆伟 殷宏涛 陶琛 LUO Wei;YIN Hongtao;TAO Chen(Department of Software Engineering,Dalian Neusoft University of Information,Dalian 116023,China)
出处 《软件工程》 2022年第2期42-45,共4页 Software Engineering
关键词 社团管理 推荐算法 语义相似度 余弦相似度 club management recommendation algorithm semantic similarity cosine similarity
  • 相关文献

参考文献6

二级参考文献110

  • 1Resnick P, lakovou N, Sushak M, et al. GroupLens: An open architecture for collaborative filtering of netnews. Proc 1994 Computer Supported Cooperative Work Conf, Chapel Hill, 1994: 175-186
  • 2Hill W, Stead L, Rosenstein M, et al. Recommending and evaluating choices in a virtual community of use. Proc Conf Human Factors in Computing Systems. Denver, 1995:194 -201
  • 3梅田望夫.网络巨变元年-你必须参加的大未来.先觉:先觉出版社,2006
  • 4Adomavicius G, Tuzhilin A. Expert-driven validation of Rule Based User Models in personalization applications. Data Mining and Knowledge Discovery, 2001, 5(1-2):33-58
  • 5Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the art and possible extensions. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 734-749
  • 6Rich E. User modeling via stereotypes. Cognitive Science, 1979, 3(4) : 329-354
  • 7Goldberg D, Nichols D, Oki BM, et al. Using collaborative filtering to weave an information tapestry. Comm ACM, 1992, 35(12):61-70
  • 8Konstan JA, Miller BN, Maltz D, el al. GroupLens: Applying collaborative filtering to usenet news. Comm ACM, 1997, 40(3) : 77-87
  • 9Shardanand U, Maes P. Social information filtering: Algorithms for automating ‘Word of Mouth'. Proe Conf Human Factors in Computing Systems Denver, 1995: 210-217
  • 10Linden G, Smith B, York J. Amazon. corn recommendations: hem-to-item collaborative filtering. IEEE Internet Computing, 2003, 7(1): 76-80

共引文献546

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部