期刊文献+

基于状态观测器的异结构混沌系统同步 被引量:1

State-observer-based synchronization of non-identical chaotic systems
原文传递
导出
摘要 基于柔性变结构控制策略,研究异结构混沌系统的驱动-响应同步问题。设计驱动系统的状态观测器,估计驱动系统中不可观测的状态,提出一种柔性变结构控制算法,使状态观测器与响应系统达到完全同步。根据Lyapunov稳定性理论,证明驱动系统与观测器、观测器与响应系统之间的误差趋于零,这说明提出的柔性变结构控制器对实现异结构混沌系统之间的同步完全有效。数值仿真结果表明,状态观测器不但可以估计驱动系统的状态,而且还有一定的鲁棒性;在柔性变结构控制器作用下,可以实现状态观测器与响应系统的完全同步。 The driving-response synchronization of two non-identical chaotic systems was studied based on the soft variable structure control strategy.A state observer was designed to estimate the unobserved states of the driving system,and a soft variable structure control algorithm was proposed to realize the synchronization of the state observer and the response system.The Lyapunov stability theory was used to prove that the errors between the driving system and the state observer,and between the state observer and the response system tend to zero,which indicated that the controller is effective for the synchronization of non-identical chaotic systems.The numerical results showed that the state observer can not only estimate the state of the driving system but also has certain robustness,and the response system and the state observer achieved full synchronization under the soft variable structure controller.
作者 孙妍 仓诗建 薛薇 SUN Yan;CANG Shijian;XUE Wei(College of Electronic Information and Automation,Tianjin University of Science and Technology,Tianjin 300222,China;College of Art Design,Tianjin University of Science and Technology,Tianjin 300222,China)
出处 《山东大学学报(工学版)》 CAS CSCD 北大核心 2021年第6期75-83,共9页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金资助项目(61873186)。
关键词 异结构混沌系统同步 LYAPUNOV稳定性理论 状态观测器 抗干扰能力测试 柔性变结构控制 synchronization of non-identical chaotic systems Lyapunov stability theory state observer anti-interference ability test soft variable structure control
  • 相关文献

参考文献7

二级参考文献25

  • 1马义方,蔡际令,汪雄海.伺服系统的自适应模糊滑模最优控制研究[J].浙江大学学报(工学版),2006,40(6):1032-1035. 被引量:13
  • 2柯海森,叶旭东,钱建海.移动机器人的鲁棒自适应控制器设计[J].浙江大学学报(工学版),2006,40(7):1127-1131. 被引量:8
  • 3K Fregene, D Kennedy.“Stabilizing control of a high-order generator model by adaptive feedback linearization [J]. Energy Conversion, IEEE Trans. on, 2003, 18(1):149-156.
  • 4Z G Sun, S S Ge. Nonregular feedback linearization: a nonsmooth approach [J]. Automatic Control, IEEE Transactions on, 2003, 48(10): 1772-1776.
  • 5M Dogruel. Input linearization of nonlinear systems via pulse-width control [J]. Automatic Control, IEEE Transactions on, 2003, 48(4): 635-638.
  • 6S Baglio, L Fortuna. Chaos control by input-state linearization [A]. Proceedings of the 37th Midwest Symposium on [C]. 1994, 2(3-5): 1389-1392.
  • 7F Ricardo, S P Gualberto. On the chaos synchroni- zation phenomena [J]. Phys. Lett. A, 1999, 262:50-60.
  • 8F Ricardo, A R Jose. Synchronization of a class of strictly different chaotic oscillators [J]. Physics Letters A, 1997, 236:307-313.
  • 9E N Lorenz. Deterministic non-periodic flows [J]. J. Atmos. Sci., 1963, 20: 130-141.
  • 10J Adamy, A Flemming. Soft variable-structure controls: a survey [J]. Automatica (S0005-1098), 2004, 40(5): 1821-1844.

共引文献18

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部