期刊文献+

基于V-视差法的道路区域检测算法研究 被引量:3

Research on road area detection algorithm based on V-disparity method
在线阅读 下载PDF
导出
摘要 针对当前基于双目视觉的道路环境分析实时性差、检测不准确等问题,提出了一种改进V视差法的道路区域检测算法。该算法首先对原始图片进行车道线检测确定道路消失点,从而确定图像的感兴趣区域。然后,使用极大最小值约束获取V视差图中的斜线,从而提取道路区域。实验结果表明,由于该方法在确定感兴趣区域后计算原始视差图,因此,速度提高了29.71%,且相对于传统V视差法,算法更好地实现了路面分割;同时,障碍物检测的精确率和召回率两个指标分别提高了2.165%和4.837%。基于该算法具有良好的准确性和实时性,能有效识别道路中的障碍物,因此,可以为车辆提供可行驶区域以及为驾驶员提供辅助作用。 Aiming at the problems of poor real-time performance and inaccurate detection of road environment analysis based on binocular vision, a road area detection algorithm based on improved V-disparity method is proposed. The algorithm firstly detects the lane line of the original image to determine the vanishing point of the road, thereby determining the region of interest of the image. Then, the oblique line in the V-disparity map is obtained using the maximum and minimum constraints, so as to extract the road area. Experimental results show that because the method calculates the original disparity map after determining the region of interest, the speed is increased by 29.71%, and compared with the traditional V-disparity method, the algorithm achieves better road segmentation;at the same time, the accuracy of obstacle detection The two indicators of and recall rate increased by 2.165% and 4.837% respectively. Based on this algorithm, it has good accuracy and real-time performance, and can effectively identify obstacles in the road, so it can provide a drivable area for the vehicle and provide assistance to the driver.
作者 李春明 耿永鹏 远松灵 LI Chunming;GENG Yongpeng;YUAN Songling(School of Information Science and Engineering,Hebei University of Science and Technology,Shijiazhuang 050018,China;Shjiazhuang Jinghua Electronic Industrial Co.,Ltd.,Shijiazhuang 050200,china)
出处 《激光杂志》 CAS 北大核心 2022年第1期107-112,共6页 Laser Journal
基金 河北省科技厅项目(No.17210803D)。
关键词 双目视觉 辅助驾驶 道路检测 感兴趣区域 V视差图 binocular vision assist driving road detection region of interest V disparity map
  • 相关文献

参考文献9

二级参考文献54

  • 1王帅帅,刘建国,纪郭.基于全卷积神经网络的车道线检测[J].数字制造科学,2020(2):122-127. 被引量:3
  • 2钟泽滨.一种用于车道线识别的图像灰度化方法[J].同济大学学报(自然科学版),2019,47(S01):178-182. 被引量:23
  • 3王辉,邹伟,郑睿.基于视觉的移动机器人实时障碍检测研究[J].计算机工程与应用,2005,41(25):46-48. 被引量:10
  • 4FRANKE U, GAVRILA D,GORZIG S,et al. Autonomous driving goes downtown [J], Intelligent Systemsand Their Applications, IEEE, 1998,13(6) : 40 - 48.
  • 5BERTOZZI M, BR(X;GI A. (K)LD: a parallel real-timestereo vision system for generic obstacle and lane detec-tion [J]. IEEE Transactions on Image Processing, 1998,7(1): 62-81.
  • 6LABAYRADE R, AUBERT D, TAREL J P. Real timeobstacle detection in stereovision on non flat road geome-try through ‘‘V-disparity” representation [C] // Intelli-gent Vehicle Symposium. Versailles: IEEE, 2002, 2 :646 - 651.
  • 7LABAYRADE R, AUBERT D. A single framework forvehicle roll? pitch, yaw estimation and obstacles detec-tion by stereovision[C]//Intelligent Vehicles Symposi-um. Columbus: 1EEK, 2003 : 31 - 36.
  • 8HU Z, UCHIMURA K. U-V-disparity: an efficient algo-rithm for stereovision based scene analysis [.C]// IntelligentVehicles Symposium. Nevada: IEEP^, 2005 : 48 -54.
  • 9DEMIROJIAN I),DARRELL T. Motion estimationfrom disparity images [ C] // 8th IKKK InternationalConference on Computer Vision. Vancouver: IEEE,2001,1:213-218.
  • 10PFEIFFER D, FRANKE U, Modeling dynamic 3Denvironments by means of the stixel world [J]. IntelligentTransportation Systems Magazine. 2011,3(3) : 24 - 36.

共引文献88

同被引文献16

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部