期刊文献+

基于拓扑链路识别的光网络流量数据合成算法 被引量:6

Traffic Data Synthesis Algorithm for Optical Network based on Topological Link Recognition
在线阅读 下载PDF
导出
摘要 基于深度学习的光网络流量诊断与预测等场景中,由于保密等原因,光链路的流量数据采集和存储工作受限。针对数据量少而无法支撑深度学习的问题,文章提出了一种基于拓扑链路识别的光网络流量数据合成算法,其核心思想是在生成对抗网络框架下,联合基于光网络拓扑的条件生成模型和基于光网络流量的数据合成模型,以自监督的方式合成指定光链路的流量数据。仿真结果表明,所提算法合成的光网络流量数据在自相关系数指标上与真实数据接近且使得基于全连接神经网络的流量预测模型准确率达到95%以上。 In the scenarios of traffic diagnostic analysis and prediction in optical network based on deep learning,the work of traffic data collection and storage for optical link is limited due to security and other reasons.Aiming at the problem that the amount of traffic data is too small to support deep learning training,this paper proposes an optical network traffic data synthesis algorithm based on topology link recognition.The core idea is to combine the conditional generation model based on optical network topology and the data synthesis model based on optical network traffic in the framework of generative adversarial networks.The traffic data of the given optical link is synthesized in a self-supervised way.The simulation results show that the auto-correlation coefficients of the traffic data synthesized by the proposed algorithm is close to the real data,and the accuracy of the traffic prediction model based on fully connected neural network is more than 95%.
作者 周刚 吴树霖 张江龙 吴小华 庄浩涛 赵永利 ZHOU Gang;WU Shu-lin;ZHANG Jiang-long;WU Xiao-hua;ZHUANG Hao-tao;ZHAO Yong-li(State Grid Fujian Electric Power Co.,Ltd.,Fuzhou 350003,China;Information and Communication Branch of State Grid Fujian Electric Power Co.,Ltd.,Fuzhou 350003,China;Anhui Jiyuan Software Co.,Ltd.,Hefei 230088,China;Beijing University of Posts and Telecommunications,Beijing 100876,China)
出处 《光通信研究》 2022年第1期31-36,共6页 Study on Optical Communications
基金 国家电网有限公司总部科技资助项目(52130M190008)。
关键词 光网络 深度学习 流量预测 数据合成 optical network deep learning traffic prediction data synthesis
  • 相关文献

参考文献1

二级参考文献16

  • 1LELAND W E, TAQQU M S, WILLINGER W, et al. On the self- similar nature of Ethemet traffic [ J]. ACM SIGCOMM Computer Communication Review, 1993, 23(4) : 202 - 213.
  • 2GRASSMANN W K, LUO J X. Simulating Markov-reward processes with rare events[ J]. ACM Transactions on Modeling and Computer Simulation, 2005,15(2) : 138 - 154.
  • 3NOGUEIRA A, SALVADOR P, VALADAS R, et al. Markovian modeling of Intemet traffic[ C]//Network Performance Engineering, LNCS5223. Berlin: Springer, 2011:98-124.
  • 4BONALD T. The Erlang model with non-Poisson call arrivals[ J]. ACM SIGMETRICS Performance Evaluation Review, 2006, 34(1) : 276 - 286.
  • 5MANDELBROT B B. The fractal geometry of nature[ M]. [ S. 1. ] : W.H. Freeman and Company, 1982.
  • 6NORROS I. A storage model with self-similar input [ J]. Queueing Systems, 1994,16(3/4) : 387 -396. tkarag/Selfis/Selfis, html.
  • 7TAQQU M S, TEVEROVSKY V, WILLINGER W. Is network traffic self-similar or multifractal[J]. Fractals, 1997, 5(1): 63 -73.
  • 8LAU W C, ASHOK E, WANG J L, et al. Self-similar traffic gen- eration: the random midpoint dispaleement algorithm and its prop- erties[ C]// Proceedings of ICC '95: IEEE International Confer- ence on Communications. Piscataway, NJ: IEEE Press, 1995: 466 - 472.
  • 9Bellcore Morristown Research and Engineering Facility. BC[ EB/OL]. [2011-08 -29]. http://ita, ee. lbl. gov/html/contrib/'BC, html.
  • 10Lawrence berkeley laboratory. LBL-PKT [ EB/OL]. [ 2011 - 01 - 28]. bttp://ita, ee. lbl. gov/html/contrib/LBL-PKT, html.

共引文献1

同被引文献83

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部