期刊文献+

满秩分解最小二乘法船舶航向模型辨识 被引量:9

Ship heading model identification based on full rank decomposition least square method
在线阅读 下载PDF
导出
摘要 为了解决标准遗忘因子最小二乘法在线辨识船舶航向模型参数漂移和发散问题,考虑到船舶在实际航行中存在海洋环境扰动和数据欠激励的情况,提出并验证了一种基于满秩分解的递推最小二乘法。用实船数据进行船舶航向模型参数辨识,将辨识结果与标准遗忘因子最小二乘算法、多新息最小二乘法、最小二乘支持向量机的辨识结果进行对比,验证了满秩分解有效降低了在线辨识过程中扰动导致的参数漂移并成功抑制了参数的发散,提升了遗忘因子最小二乘法的辨识精度,减小了最小二乘法对持续数据激励的依赖。 In order to solve the problem of parameter drift and divergence in the on-line identification of the ship heading model by the forgetting factor least squares method,considering the marine environment disturbance and data under-excitation in actual navigation,we propose a forgetting factor recursive least square algorithm based on full rank decomposition,which uses the ship navigation data to identify the ship heading model parameters,and compare the identification results with the identification results of the standard forgetting factor least squares algorithm,multi-innovation least square algorithm,least square support vector algorithm.The comparison result shows that the full rank decomposition method can effectively reduce the parameter drift caused by the disturbance in the online identification process and successfully suppress divergence of the parameters,improve the accuracy of the forgetting factor least square algorithm and reduce the dependence of the least square method on continuous data excitation.
作者 包政凯 朱齐丹 刘永超 BAO Zhengkai;ZHU Qidan;LIU Yongchao(College of Intelligent Systems Science and Engineering,Harbin Engineering University,Harbin 150001,China)
出处 《智能系统学报》 CSCD 北大核心 2022年第1期137-143,共7页 CAAI Transactions on Intelligent Systems
基金 绿色智能内河船舶创新专项(MC-202002-C01) 国家自然科学基金项目(52171299)。
关键词 遗忘因子最小二乘法 数据欠激励 船舶航向模型 满秩分解 参数辨识 海洋环境扰动 参数辨识收敛性 实船航行数据 forgetting factor least square algorithm data under excitation ship heading model full rank decomposition parameter identification ocean environment disturbance parameter identification convergence ship navigation data
  • 相关文献

参考文献14

二级参考文献96

  • 1徐海祥,朱梦飞,余文曌,韩鑫.面向智能船舶的自动靠泊鲁棒自适应控制[J].华中科技大学学报(自然科学版),2020,48(3):25-29. 被引量:8
  • 2董国祥,陆惠生,江希龄.船舶操纵运动仿真及其理论研究[J].上海交通大学学报,1996,30(10):159-164. 被引量:4
  • 3Richards J A. Analysis of Periodically Time-Varying Sys- tems. New York: Springer-Verlag, 1983.
  • 4Tsakalis K S, Ioannou P A. Linear Time-Varying Systems: Control and Adaptation. Upper Saddle River, N J: Prentice- Hall, 1993.
  • 5Goodwin G C, Sin K S. Adaptive Filtering, Prediction and Control. Englewood Cliffs, N J: Prentice-Hall, 1984.
  • 6Chen H F, Guo L. Identification and Stochastic Adaptive Control. Boston, MA: Birkhauser, 1991.
  • 7郭雷.随机时变系统:稳定性、估计与控制.长春:吉林科学技术出版社,1993.
  • 8Sternby J. On consistency for the method of least squares using martingale theory. IEEE Transactions on Automatic Control, 1977, 22(3): 346-352.
  • 9Moore J B. On strong consistency of least squares identifi- cation algorithms. Automatica, 1978, 14(5): 505-509.
  • 10Solo V. The convergence of AML. IEEE Transactions on Automatic Control, 1979, 24(6): 958-962.

共引文献188

同被引文献59

引证文献9

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部