期刊文献+

热湿空气吹扫低温固体表面冷凝判断依据

Judgment Basis for Condensation of Low Temperature Solid Surface by Hot and Humid Air
在线阅读 下载PDF
导出
摘要 在低温高湿环境下金属表面常出现的冷凝现象会引发腐蚀或热效率降低的问题,这对设备运行存在稳定性和安全性隐患。为了准确判断金属固体表面出现冷凝临界点,本文采用多物理场耦合COMSOL软件分析了不同的固体形状、空气温度及湿度条件下固体表面的冷凝情况,得出以下结论:不同形状尺寸的固体表面在出现冷凝的临界点相差很小;空气相对湿度数值越大,冷凝临界点越高,反之越低;空气的温度越高,冷凝临界点越高,反之越低。总之,进口空气的温度和湿度是影响固体表面冷凝的主要因素。 Condensation that often occurs on metal surfaces in a low-temperature and high-humidity environment can cause corrosion or reduced thermal efficiency, which poses hidden dangers to the stability and safety of equipment operation. In order to accurately determine the critical point of condensation on the metal solid surface, this paper uses the multi-physics coupling COMSOL software to analyze the condensation on the solid surface under different solid shapes, air temperature and humidity conditions. The following conclusions are drawn: the solid surfaces of different shapes and sizes have very little difference at the critical point of condensation. The larger the relative humidity of the air, the higher the condensation critical point, and vice versa. The higher the air temperature, the higher the condensation critical point, and vice versa. In short, the temperature and humidity of the inlet air are the main factors that affect the solid surface condensation.
作者 陈达南 邓立生 陈捷超 车哲述 周友 CHEN Danan;DENG Lisheng;CHEN Jiechao;CHE Zheshu;ZHOU You(Guangzhou Institute of Energy Conversion,Chinese Academy of Sciences,Guangzhou 510640,China;Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou),Guangzhou 511458,China;不详;National Institute of Clean-and-Low-Carbon Energy,Beijing 102211,China)
出处 《制冷》 2021年第4期63-67,共5页 Refrigeration
基金 国家能源集团科技创新项目(GJNY-20-121) 南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0108) 广东省自然科学基金项目(2017A030310185)。
关键词 冷凝 热湿空气 数值模拟 扩散 对流换热 Condensation Hot Humid Air Numerical Simulation Diffusion Convective Heat Transfer
  • 相关文献

参考文献5

二级参考文献40

  • 1王随林,刘贵昌,温治,艾效逸,傅忠诚,潘树源,杨冬梅,李丽萍,吕照.新型防腐镀膜烟气冷凝换热器换热实验研究[J].暖通空调,2005,35(2):71-74. 被引量:38
  • 2杨世铭.传热学[M].高等教育出版社,1987,10..
  • 3WM凯斯 A L 伦敦.紧凑式热交换器[M].北京:科学出版社,1997..
  • 4LEE W H. A pressure iteration scheme for two-phaseflow modeling [M]. Washington, USA: Hemisphere Publishing, 1980.
  • 5DE SCHEPPER S C K, HEYNDERICHX G J, MARING B. Modeling the evaporation of a hydrocarbon feedstock in the convection section of a steam cracker [J]. Computers and Chemical Engineering, 2009, 33 (1) : 122-132.
  • 6ALIZADEHDAKHEL A, RAHIMI M, ALSAIRAFI A A. CFD modeling of flow and heat transfer in a thermosyphon [J]. International Communications in Heat and Mass Transfer, 2010, 37 (3) : 312-318.
  • 7YANG Z, PENG X F, YE P. Numerical and experimental investigation of two phase flow during boiling in a coiled tube [J]. International Journal of Heat and Mass Transfer, 2008, 51 (5/6): 1003-1016.
  • 8FANG C, DAVID M, ROGACS A, et al. Volume of fluid simulation of boiling two-phase flow in a vaporventing microchannel [J]. Frontiers in Heat and Mass Transfer, 2010, 1 (1): 1-11.
  • 9WELCH S W J, WILSON J. A volume of fluid based method for fluid flows with phase change [J]. Journal of Computational Physics, 2000, 160 (2): 662-682.
  • 10GUODZ, SUN DL, LI Z Y, et al. Phase change heat transfer simulation for boiling bubbles arising from a vapor film by VOSET method [J]. Numerical Heat Transfer: Part A, 2011, 59 (11): 857-881.

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部