期刊文献+

用于半导体芯片封装的真空吸嘴视觉识别技术 被引量:1

Visual Recognition Technology of Vacuum Suction Nozzle for Semiconductor Ship Packaging
在线阅读 下载PDF
导出
摘要 为了解决半导体芯片封装过程中因错用真空吸嘴而造成芯片损坏等问题,利用图像识别和视觉检测理论及方法,开发一套基于OpenCV和Qt平台的用于半导体芯片封装的真空吸嘴型号识别系统。系统首先提取真空吸嘴的形状、外轮廓尺寸、内轮廓尺寸、颜色等特征参数,其中:对于真空吸嘴的形状,利用了基于矩形度的形状识别算法;对于真空吸嘴的颜色,提出了基于感兴趣区域内灰度平均值的颜色识别算法;对于真空吸嘴的尺寸测量,使用了基于一维像素序列灰度跃变的边缘点检测的尺寸测量算法。然后将特征参数作为查找条件,在真空吸嘴数据库中进行比对,从而达到分类的效果。实验结果表明:该系统识别准确率达98.85%,识别一个真空吸嘴所用时间约为1 s,满足实际应用要求,为真空吸嘴的管理分类提供了参考。 In order to solve the problem of chip damage caused by improper use of vacuum nozzles in semiconductor chip packaging, a vacuum nozzles model identification system based on OpenCV and Qt platform for semiconductor chip packaging was developed by using the theory and method of image recognition and visual detection. The shape, outer contour size, inner contour size, color and other characteristic parameters of the vacuum nozzle were extracted by the system. For the shape of the vacuum nozzle, the shape recognition algorithm based on rectangle was used. For the color, a color recognition algorithm based on the average gray value in the region of interest was proposed. For the dimension measurement, the edge point detection algorithm based on gray jump of one-dimensional pixel sequence was used. Then the characteristic parameters were taken as search conditions and compared in the vacuum nozzle database to achieve the classification effect. The experimental results show that the recognition accuracy of the system is 98.85%, and the recognition time of a vacuum nozzle is about 1 s, which meets the practical application requirements. It provides reference for the management and classification of vacuum nozzle.
作者 邱景 胥云 廖映华 刘思懿 容潇伟 QIU Jing;XU Yun;LIAO Yinghua;LIU Siyi;RONG Xiaowei(College of Mechanical Engineering,Sichuan University of Science&Engineering,Yibin Sichuan 644000,China;Sichuan Advanced Manufacturing Technology Engineering Research Center for Mobile Terminal Structural Parts,Yibin Sichuan 644000,China;Faculty of Engineering,University of Sydney,Sydney,New South Wales,2006,Australia)
出处 《机床与液压》 北大核心 2022年第1期49-55,共7页 Machine Tool & Hydraulics
基金 工信部智能制造新模式项目([2018]265号)。
关键词 机器视觉 图像处理 真空吸嘴 识别技术 Machine vision Image processing Vacuum nozzle Recognition technology
  • 相关文献

参考文献7

二级参考文献58

共引文献35

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部