期刊文献+

模糊随机BAM神经网络的固定时间同步

Fixed-time synchronization of fuzzy stochastic BAM neural networks
在线阅读 下载PDF
导出
摘要 对带有时滞的模糊随机BAM神经网络进行了固定时间同步分析.在传统BAM神经网络的框架下,引入了随机扰动、模糊性、离散时滞的影响,使得网络模型更符合实际系统,拓展了模型的应用范围.在此基础上,通过设计合适的反馈控制器,利用Lyapunov方法,得到了系统达到固定时间同步的判定准则.最后进行了数值模拟验证理论结果的有效性. Fixed-time synchronization analysis was performed for fuzzy stochastic BAM neural networks with time delay. In the framework of traditional BAM neural network, the effects of random perturbation, fuzziness, and discrete time delay were introduced to make the network model more consistent with the actual system and expanded the application range of the model. On this basis, by designing a suitable feedback controller and using Lyapunov method, the determination criterion for the system to reached fixed time synchronization was obtained. Finally, numerical simulations were conducted to verify the validity of the theoretical results.
作者 刘宇 刘铭 LIU Yu;LIU Ming(College of Science,Northeast Forestry University,Harbin 150040,China)
出处 《哈尔滨商业大学学报(自然科学版)》 CAS 2022年第1期75-81,共7页 Journal of Harbin University of Commerce:Natural Sciences Edition
基金 教育部高校基本科研业务费专项资金资助项目(2572020BC09)。
关键词 BAM神经网络 随机扰动 固定时间同步 反馈控制 离散时滞 模糊性 BAM neural network sochastic perturbation fixed-time synchronization feedback control discrete time delay fuzzy
  • 相关文献

参考文献8

二级参考文献51

  • 1陈安平,曹进德,黄立宏.时滞BAM神经网络周期解的存在性和全局指数稳定性[J].应用数学学报,2005,28(2):193-209. 被引量:7
  • 2王永富,柴天佑.自适应模糊控制理论的研究综述[J].控制工程,2006,13(3):193-198. 被引量:78
  • 3CAFAGNA D, GRASSI G. Observer-based projective synchronization of fractional systems via a scalar signal: application to hyperchaotic Rossler systems[J]. Nonlinear Dynamics, 2012, 68(1-2): 117 -128.
  • 4HUBLER A W. Adaptive control of chaotic system [J]. Helvetia Physica Acta, 1989, 62( 4) : 343 -346.
  • 5PECORA L, CARROLL T. Synchronization in chaotic systems [J]. Physical Review Letters, 1990, 64(8) : 821 - 824.
  • 6CHEN Guan-rong, LAI De-jian. Feedback anticontrol of discrete chaosj J}. International Journal of Bifurcation and Chaos, 1998,8(7): 1585 - 1590.
  • 7LIMA R, PETTINI M. Suppression of chaos by resonant parametric perturbations[J]. Physical Review A, 1990,41(2): 726 -733.
  • 8CALKINS F T ,MABE J H. Shape memory alloy based morphing aerostructures[J]. Journal of Mechanical Design, 2010, 132(11) :doi: 10.11151 1. 4001119.
  • 9OTT E, GREBOGI C, YORKE J A. Controlling chaosj L]. Physical Review Letters, 1990, 64( 11): 1196 -1199.
  • 10SHINBROT T, GREBOGI C, OTT E, et al. Using small perturbations to control chaos [J]. Nature, 1993, 363( 6428) : 411 -417.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部