期刊文献+

基于投影法的约束违约抑制研究

Research on Constraint Violation Elimination based on Projection Method
在线阅读 下载PDF
导出
摘要 针对解算动力学方程时存在的约束违约问题,给出了一种将投影法与Udwadia-Kalaba方程相结合的方法。该方法将系统零阶、1阶广义变量的数值解向由约束方程定义的约束流形投影,进而获得数值解的偏移量,再将其转化为系统的约束力,并将其融入Udwadia-Kalaba方程,以达到抑制约束违约的目的。与仅考虑1阶约束方程的改进Udwadia-Kalaba方程相比,基于运动受限的工业机械臂的动力学模型仿真结果表明,该修正方法能有效提高系统广义变量及零阶、1阶约束误差的计算精度。 Aiming at problem of constraint violation in solving the dynamics equation,a method combining the projection method with Udwadia-Kalaba equation is proposed.In this method,the numerical solutions of the zero-order and first-order generalized variables of the system are projected to the constrained manifold defined by the constraint equation,the offsets of the numerical solution are obtained,then the offsets are transformed into the constraint force and integrated into Udwadia-Kalaba equation to achieve the purpose of restraining the constraint violation.Compared with the improved Udwadia-Kalaba equation which only considers the first order constraint equation,the simulation results of dynamics model of industrial manipulator subject to constraint show that the modified method can effectively improve the calculation accuracy of generalized variables and zero-order and first-order constraint errors.
作者 刘佳 徐亚茹 杨凯 孙宏强 Liu Jia;Xu Yaru;Yang Kai;Sun Hongqiang(College of Mechanical and Electrical Engineering,Shijiazhuang University,Shijiazhuang 050035,China;College of Robotics,Beijing Union University,Beijing 100020,China)
出处 《机械传动》 北大核心 2022年第2期23-27,共5页 Journal of Mechanical Transmission
基金 河北省教育厅高等学校科学研究项目(QN2020510) 北京联合大学科研项目(ZK80202004) 河北省教育厅高等学校科学研究项目(Z2020106) 石家庄学院博士科研启动基金(18BS014)。
关键词 投影法 约束违约 Udwadia-Kalaba方程 动力学建模 Projection method Constraint violation Udwadia-Kalaba equation Dynamics modeling
  • 相关文献

参考文献3

二级参考文献25

  • 1刘才山,陈滨,彭瀚,乔勇.多体系统多点碰撞接触问题的数值求解方法[J].动力学与控制学报,2003,1(1):59-65. 被引量:11
  • 2赵振,刘才山,陈滨.三维含摩擦多刚体碰撞问题的数值计算方法[J].中国科学(G辑),2006,36(1):72-88. 被引量:9
  • 3Kane T R, Levinson D A. Chaotic dynamics: theory and applications [ M ]. New York : McGraw-Hill Ltd, 1985 : 2 31 -241.
  • 4Yu W, Matthew T M. Two-dimensional rigid-body collision with friction [ J ]. Journal of Applied Mechanics, 1992, 59 (3) : 635 -642.
  • 5Jean M, Moreau J J. Unilaterality and dry friction in the dynamics of rigid body collections [ A ]. Proceeding of Contact Mechanics International Symposium[ C ]. Lausanne, Switzerland, 1992:31 - 48.
  • 6Stronge W J. Rigid body collisions with friction [ A ]. Proceedings of the royal society of London : Series A [ C ]. London, Britain, 1990,431 : 169 - 181.
  • 7Glocker C, Pfeiffer F. Multiple Impacts with Friction in Rigid Multibody Systems [ J ]. Nonlinear Dynamics, 1995,7 ( 4 ) : 471 - 497.
  • 8Lankarani M H, Pereira F M. Treatment of impact with friction in planar Muhibody mechanical systems [ J ]. Mutibody System Dynamics, 2001, 6 (3) : 203 - 227.
  • 9Baraff D. Analytical methods for dynamic simulation of nonpenetrating rigid bodies [ A]. Proceedings of the 1989 ACM SIGGRAPH conference [ C ]. New York, USA, 1989, 23 : 223 - 232.
  • 10Lars J. A linear complementarity algorithm for rigid body impact with friction[ J]. European Journal of Mechanics, 1999, 18(4) : 703 -717.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部