期刊文献+

“光火储”一体化发电系统研究 被引量:8

Research on integrated power generation system of“solar,coal-fired power and energy storage”
在线阅读 下载PDF
导出
摘要 为实现2060“碳中和”目标,在传统火电机组(CFPP)基础上,开发利用太阳能和储能,提出了带储热的槽式太阳能光热系统、压缩空气储能(CAES)和火电机组集成的“光火储”一体化发电系统。此系统既可克服火电机组和压缩空气储能的耦合(CFPP+CAES)系统在释能阶段从火电机组抽取热量的缺点,又能充分利用太阳能资源,提高可再生能源的利用率、降低火电机组发电煤耗。利用EBSILON软件对该系统在火电机组100%负荷工况下的热经济性、节煤效果进行了分析,结果表明:与传统CFPP系统相比,该“光火储”系统中方案2平均热耗率降低了33.5 kJ/(kW·h),平均标准煤耗率降低了1.30 g/(kW·h);“光火储”一体化发电系统中方案2的CAES系统㶲效率可以达到68.81%,较先进绝热压缩空气储能(AA-CAES)系统提升了16.49%,且通过计算每个部件㶲损失,发现CAES系统5—8号换热器节能潜力较大;根据2019年实行的某市峰谷分时电价标准,该“光火储”一体化发电系统每年净售电收益最大为1045.49万元。 An integrated power generation system combinedwith a parabolic trough solar system,a compressed air energy storage(CAES)system,and a thermal power plant is proposed to achieve the goal of“carbon neutralization”in 2060,and utilize solar energy and energy storage technology based on coal-fired power plant(CFPP).This system can overcome the disadvantage of extracting heat from the thermal power plant during the discharge process of CAES when coupling with CFPP and makes full use of the heat produced by the parabolic trough solar system to improve the utilization of renewable energy and reduce the coal consumption.The thermal performance and coal-saving effect of this system under 100%load operation condition of the thermal power plant are analyzed by EBSILON software.The results show that compared with the conventional CFPP system,the average heat consumption of the integrated system with scheme 2 reduces by 33.5 kJ/(kW·h),and the average standard coal consumption rate decreases by 1.30 g/(kW·h).The CAES system of the integrated power generation system with scheme 2 can achieve 68.81%productivity,16.49%higher than that of the advanced adiabatic compressed air energy storage(AA-CAES)system.The calculating results of the exergy loss of each component reveal that the No.5~8 heat exchanger in the CAES system has a higher energy-saving potential.The annual electricity sales profit of the integrated power generation system is up to 10.4549 million yuan according to the peak and off-peak electricity usage times and rates of a city implementedin 2019.
作者 李斌 王雨萌 张庆来 范林达 刘雅晴 张新敬 LI Bin;WANG Yumeng;ZHANG Qinglai;FAN Linda;LIU Yaqing;ZHANG Xinjing(School of Energy Power and Mechanical Engineering,North China Electric Power University,Baoding 071003,China;Institute of Engineering Thermophysics,Chinese Academy of Sciences,Beijing 100190,China)
出处 《热力发电》 CAS CSCD 北大核心 2022年第2期56-64,共9页 Thermal Power Generation
基金 国家自然科学基金项目(51676181)。
关键词 太阳能 可再生能源 燃煤发电 储热装置 压缩空气储能 solar energy renewable energy coal-fired power generation heat storage device compressed air energy storage
  • 相关文献

参考文献13

二级参考文献103

  • 1王子琳,鲁玺,庄明浩,张憧宇,陈诗.中国三北地区风—光互补发电系统空间优化研究[J].全球能源互联网,2020,0(1):97-104. 被引量:15
  • 2范鑫,秦建明,刘静宇,周志平,李明.超临界600MW汽轮机低负荷运行优化技术研究[J].中国电力,2012,45(11):18-21. 被引量:27
  • 3张新敬,陈海生,刘金超,李文,谭春青.压缩空气储能技术研究进展[J].储能科学与技术,2012,1(1):26-40. 被引量:155
  • 4常振明,韩平,曲春洪.可再生能源利用现状与未来展望[J].当代石油石化,2004,12(12):19-23. 被引量:21
  • 5黄素逸,黄树红,等.太阳能热发电原理及技术[M].北京:中国电力出版社,2012:204.
  • 6Lund H, Salgi G. The Role of Compressed Air Energy Storage (CAES) in Future Sustainable Energy Systems [J]. Energy Conversion and Management, 2009, 50(5): 1172-1179.
  • 7陈海生,谭春青,刘佳,等.超临界空气储能系统:中国,200910225252.3[P].2013.
  • 8Najjar Y S H, Zaamout M S. Performance Analysis of Compressed Air Energy Storage (CAES) Plant for Dry Regions [J]. Energy Conversion and Management, 1998, 39(15): 1503-1511.
  • 9Grazzini G, Milazzo A. Thermodynamic Analysis of CAES/TES Systems For Renewable Energy Plants [J]. Renewable Energy, 2008, 33(9): 1998-2906.
  • 10Kim Y M, Favrat D. Energy and Exergy Analysis of a Micro-compressed Air Energy Storage and Air Cycle Heat- ing and Cooling System [J]. Energy, 2009, 35(1): 213-220.

共引文献347

同被引文献126

引证文献8

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部