期刊文献+

自适应插值飞蛾扑火优化的多特征粒子滤波车辆跟踪算法 被引量:3

A Multi-Feature Particle Filter Vehicle Tracking Algorithm Based on Adaptive Interpolation Moth-Flame Optimization
在线阅读 下载PDF
导出
摘要 针对现有飞蛾扑火优化算法精度低、全局搜索能力差的问题,提出一种自适应插值飞蛾扑火优化算法,并将其嵌入多特征粒子滤波中优化,构建自适应插值飞蛾扑火优化的多特征粒子滤波车辆跟踪算法.首先,在飞蛾的位置更新机制中加入自适应权值,改善所提算法的全局搜索能力.其次,采用改进的插值飞蛾扑火优化算法对采样过程进行优化,结合多特征自适应融合优化粒子滤波车辆跟踪算法,根据最新观测信息不断调整粒子分布,使低权值层粒子向权值较高的区域移动,增强粒子质量,避免样本退化.实验结果表明,本文算法能够有效降低状态预测所需的样本粒子数,提高算法的跟踪性能,在车辆目标发生遮挡、光照、姿态及尺度变化等干扰下仍然能够准确、稳定地跟踪目标车辆. In order to solve the problem of low accuracy and the poor global searching ability of the moth-flame optimization algorithm,an improved adaptive interpolation moth-flame optimization algorithm is proposed,which is embedded into multi-feature particle filter to optimize.Besides,a multi-feature particle filter vehicle tracking algorithm based on adaptive interpolation moth-flame optimization is constructed.First,adaptive weights are added to the moths’position updating mechanism to improve the global searching ability of the proposed algorithm.Next,the adaptive interpolation moth-flame optimization algorithm is used to optimize the sampling process.Then,in combination with the multi-feature adaptive fusion particle filter vehicle tracking algorithm,the particle distribution according to the latest observation information is continuously adjusted,so that the particles in the low weight layer can move to the area with higher weight to enhance the particle quality and avoid sample degradation.The experimental results show that the proposed algorithm can effectively reduce the number of sample particles required for state prediction,improve the tracking performance of the algorithm,and track the target vehicle accurately and stably under the interferences of occlusion,illumination,attitude,and scale changes.
作者 黄鹤 吴琨 李昕芮 王珺 王会峰 茹锋 HUANG He;WU Kun;LI Xinrui;WANG Jun;WANG Huifeng;RU Feng(School of Electronics and Control Engineering,Chang’an University,Xi’an 710064,China;Xi’an Key Laboratory of Intelligent Expressway Information Fusion and Control,Chang’an University,Xi’an 710064,China;School of Information Science and Technology,Northwest University,Xi’an 710127,China)
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2022年第2期143-155,共13页 Journal of Shanghai Jiaotong University
基金 国家重点研发计划项目(2018YFB1600600) 陕西省重点研发计划项目(2021GY-285,2021SF-483) 陕西省自然科学基础研究计划项目(2021JM-184) 长安大学中央高校基本科研业务费专项资金项目(300102329401,300102329501) 西安市智慧高速公路信息融合与控制重点实验室(长安大学)开放基金项目(300102321502)。
关键词 车辆跟踪 粒子滤波 多特征融合 飞蛾扑火 vehicle tracking particle filter multi-feature fusion moth-flame
  • 相关文献

参考文献7

二级参考文献75

  • 1莫以为,萧德云.基于进化粒子滤波器的混合系统故障诊断[J].控制与决策,2004,19(6):611-615. 被引量:23
  • 2莫以为,萧德云.进化粒子滤波算法及其应用[J].控制理论与应用,2005,22(2):269-272. 被引量:41
  • 3胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 4杨小军,潘泉,王睿,张洪才.粒子滤波进展与展望[J].控制理论与应用,2006,23(2):261-267. 被引量:74
  • 5方正,佟国峰,徐心和.粒子群优化粒子滤波方法[J].控制与决策,2007,22(3):273-277. 被引量:95
  • 6GORDON N J, SALMOND D J, SMITH A F M. Novel approach to non-linear/non-Gaussian bayesian state estimation[J]. IEEE Proceedings on Radar, Sonar and Navigation, 1993, 140(2): 107 - 113.
  • 7CRISAN D, DOUCET A. A survey of convergence results on particle filtering methods for practitioners [J]. IEEE Transactions on Signal Processing, 2002, 50(2): 736 - 746.
  • 8DOUCET A, GORDON N J. Sequential Monte Carol Methods in Practice[M]. New York: Springer-Verlag, 2001:247 - 272.
  • 9MERWE R V, DOUCET A, FRE1TAS N DE, et al. The unscented particle filter[R]//Technical Report of the Cambridge University Engineering Department CUED/F INFENG/TR, 380. England: Cambridge University Press, 2001:1 - 45.
  • 10RONGHUA L, BINGRONG H. Coevolution based adaptive Monte Carlo localization[J]. International Journal of Advanced Robotic Systems, 2004, 1(3): 183 - 190.

共引文献93

同被引文献38

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部