摘要
激光雷达回波信号是非线性非平稳信号,且易被各类噪声污染。为高精度提取有效信号信息,需选取合适的方法进行降噪处理。采用激光雷达回波仿真信号,对其添加泊松噪声,再利用小波变换(WT)、经验模态分解(EMD)、变分模态分解(VMD)及其改进和联合算法进行回波信号的去噪实验,最后通过对比分析,选取最适合激光雷达回波信号的降噪方法。实验结果表明,WT-VMD联合算法在不同原始信噪比下都具有最大的输出信噪比和最小的均方根误差,且去噪后信号曲线的平滑度较小,能很好地还原激光雷达回波原始信号,利于提高后续信号的反演精度。
The echo signal of light detection and ranging(LiDAR) is nonlinear and non-stationary and is easily disturbed by various noises.In order to filter out noises and extract effective signal information,it is necessary to select appropriate methods for noise reduction processing.In this study,Poisson noise was added to the simulated LiDAR echo signal,and then de-noising experiments were carried out by wavelet transform(WT),empirical mode decomposition(EMD),variational mode decomposition(VMD),and their improved and combined algorithms.Afterward,we selected the optimal de-noising method for LiDAR echo signal through comparative analysis.The experimental results showed that the WT-VMD joint algorithm has the maximum output signal-to-noise ratio(SNR) and the minimum root-mean-square error(RMSE) under different original SNRs,with a small smoothness of the de-noised curve,and therefore it can restore the original LiDAR echo signal well and improve the accuracy of subsequent signal inversion.
作者
丁红波
王珍珠
刘东
Ding Hongbo;Wang Zhenzhu;Liu Dong(Key Laboratory of Atmospheric Optics,Anhui Institute of Optics and Fine Mechanics,Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei,Anhui 230031,China;University of Science and Technology of China,Hefei,Anhui 230026,China;Advanced Laser Technology Laboratory of Anhui Province,Hefei,Anhui 230037,China)
出处
《光学学报》
EI
CAS
CSCD
北大核心
2021年第24期1-10,共10页
Acta Optica Sinica
基金
国家自然科学基金面上项目(41975038)
安徽省自然科学基金杰青项目(2008085J33)
安徽省重点研究与开发计划(202004b11020012)
“一带一路”国际科学组织联盟联合研究合作专项(ANSO-CR-KP-2020-09)
中国科学院青年创新促进会人才项目(2017482)。
关键词
遥感
激光雷达
去噪
小波变换
经验模态分解
变分模态分解
remote sensing
LiDAR
de-noising
wavelet transform
empirical mode decomposition
variational mode decomposition