期刊文献+

微生物燃料电池处理丙酮和氨氮废水及同步产电性能 被引量:3

Treatment of acetone and ammonia-nitrogen wastewater and simultaneous power generation using microbial fuel cell
在线阅读 下载PDF
导出
摘要 利用阴离子交换膜作为分隔膜构建了生物阴极微生物燃料电池(MFC),通过硝化反硝化过程去除氨氮、降解丙酮同时产电。考察了丙酮质量浓度对MFC产电性能及氨氮(质量浓度200mg/L)和化学需氧量去除率的影响,采用高通量测序技术分析了阳极及阴极微生物群落结构。结果表明,在丙酮质量浓度为50~700mg/L范围内,丙酮的去除率均在96%以上;当丙酮质量浓度>300mg/L时,氨氮的去除开始受到抑制,氨氮最高去除率为73.7%,且丙酮质量浓度为300mg/L时,对应的MFC的产电性能最佳,最高输出功率密度可达49.7 mW/m^(2)。从门级分类上看,阳极中的优势微生物群落主要为变形菌,拟杆菌门及厚壁菌门;阴极上的优势微生物群落为拟杆菌门、放线菌门、变形菌门及酸杆菌门。从属级分类上看,阳极主要的优势菌种为Comamonas、Acetoanaerobium、Stenotrophomonas。阴极主要的优势菌种为Rhodococcus、Aridibacter、Thauera、Ignavibacterium。 Biocathode microbial fuel cell(MFC)was constructed by using anion exchange membrane as separator,which could remove ammonia nitrogen by simultaneous nitrification and denitrification process,degrade acetone and generate electricity.The effects of acetone mass concentrations on electricity generation performance of MFC,ammonia nitrogen(mass concentration 200 mg/L)removal rate and chemical oxygen demand removal rate were investigated.The microbial communities of anode and cathode were analyzed by high throughput sequencing technology.The results showed that the removal rate of acetone(mass concentration in the range of 50~700 mg/L)was more than 96%.When acetone mass concentration was higher than 300 mg/L,the removal of ammonia nitrogen began to be inhibited,and the highest removal rate of ammonia nitrogen was 73.7%.Besides,when acetone mass concentration was 300 mg/L,the corresponding MFC achieved the highest electricity generation performance with the highest output power density of 49.7 mW/m^(2).At the phylum level,the dominant microbial communities of anode were mainly Proteobacteria,Bacteroidetes and Firmicutes,while those of cathode were Bacteroidetes,Actinobacteria,Proteobacteria and Acidobacteria.At the genus level,the dominant bacteria of anode were Comamonas,Acetoanaerobium and Stenotrophomonas,while those of cathode were Rhodococcus,Aridibacter,Thauera and Ignavibacterium.
作者 刘远峰 王乐 张秀玲 郏文龙 任婷莉 郭开祥 李从举 LIU Yuanfeng;WANG Le;ZHANG Xiuling;JIA Wenlong;REN Tingli;GUO Kaixiang;LI Congju(Beijing Higher Institution Engineering Research Center of Energy Conservation and Environmental Protection,University of Science and Technology Beijing,Beijing 100083,China;School of Energy and Environmental Engineering,University of Science and Technology Beijing,Beijing 100083,China)
出处 《精细化工》 EI CAS CSCD 北大核心 2022年第1期187-193,共7页 Fine Chemicals
基金 国家自然科学基金(51973015) 中央高校基本科研业务费专项资金(06500100,0612062) 北京市青年人才托举工程。
关键词 微生物燃料电池 硝化反硝化 丙酮 氨氮 功率密度 水处理技术 microbial fuel cells nitrification and denitrification acetone ammonia nitrogen power density water treatment technology
  • 相关文献

参考文献10

二级参考文献102

  • 1邵伟,乐超银,熊泽,唐明.醋酸杆菌合成细菌纤维素的发酵动力学研究[J].中国酿造,2005,24(10):26-29. 被引量:9
  • 2尤世界,赵庆良,姜珺秋.废水同步生物处理与生物燃料电池发电研究[J].环境科学,2006,27(9):1786-1790. 被引量:53
  • 3Lovley DR. Microbial fuel cells: novel microbial physiologies and engineering approaches. Current Opinion in Biotechnology, 2006, 17 (3) : 327-332.
  • 4Liu H, Cheng S, Logan BE. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environmental Science & Technology, 2005, 39 (2) :658-662.
  • 5Rabaey K, Clauwaert P, Aeherman P, Verstraete W. Tubular microbial fuel cells for efficient electricity generation. Environmental Science & Technology, 2005, 39 ( 20 ) : 8077-8082.
  • 6Oh S, Logan BE. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Research, 2005, 39(19) : 4673-4682.
  • 7Teng SX, Tong ZH, Li WW, Wang SG, Sheng GP, Shi XY, Liu XW, Yu HQ. Electricity generation from mixed volatile fatty acids using microbial fuel cel|s. Applied Microbiology and Biotechnology, 2010, 87 (6) : 2365- 2372.
  • 8Freguia S, Teh EH, Boon N, Leung KM, Keller J, Rabaey K. Microbial fuel cells operating on mixed fatty acids. Bioresource Technology, 2010, 101 (4): 1233- 1238.
  • 9Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W. Biofuel cells select for microbial consortia that self-mediate electron transfer. Applied and Environmental Microbiology, 2004, 70(9): 5373-5382.
  • 10Zuo Y, Xing D, Regan JM, Logan BE. Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-I by using a U-tube microbial fuel cell. Applied and Environmental Microbiology, 2008, 74 ( 10 ) : 3130-3137.

共引文献48

同被引文献18

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部