摘要
针对日供水量时间序列的非平稳性和耦合特征的复杂性,引入小波分解技术和随机森林回归模型,构建了基于尺度特征融合的随机森林模型(SF-RF)。首先,使用离散小波变换将单一尺度的原始时间序列分解为低、高频尺度的特征序列,提取耦合特征的多尺度信息;然后,使用随机森林回归模型拟合不同尺度特征;最后,线性融合各尺度的拟合结果获得总预测值。其中频率最高的尺度特征不参与预测。与单一RF模型、前馈神经网络(FFNN)和融合模型SF-FFNN相比,SF-RF模型具有最高的相关系数0.913和最低的标准均方差0.056,具有最高的预测精度,可用于城市日供水量预测。
In view of the non-stationarity and complexity of coupling features of daily water supply time series,a random forest model based on scale feature fusion(SF-RF)was constructed by incorporating wavelet decomposition technique and random forest model.Firstly,the raw time series with a single scale was decomposed into multi-scale subsequences with both low and high frequencies using discrete wavelet transformation.Secondly,the multi-scale feature in each subsequence was simulated using the random forest model.Finally,the predicted value was obtained by linear fusion using the sub-results in each scale.Features in the highest frequency scale did not participate in the forecast.Compared with single RF model,feed-forward neural network(FFNN)and fusion model SF-FFNN,the proposed SF-RF model has the highest correlation coefficient 0.913 and the lowest normalized root mean square error 0.056,indicating that the proposed model has the highest forecasting accuracy and can be utilized for daily water supply forecasting.
作者
白云
陈国强
BAI Yun;CHEN Guo-qiang(School of Management Science and Engineering, Chongqing Technology and Business University, Chongqing400067, China;Beibei Municipal Commission of Housing and Urban-Rural Development,Chongqing 400700, China)
出处
《长江科学院院报》
CSCD
北大核心
2022年第3期33-37,共5页
Journal of Changjiang River Scientific Research Institute
基金
国家自然科学基金项目(71801044)
教育部人文社科研究项目(17YJC630003)
重庆市自然科学基金项目(cstc2018jcyjAX0436)。
关键词
日供水量
小波变换
随机森林
预测模型
尺度特征
daily water supply
wavelet transform
random forest
forecasting model
scale feature