期刊文献+

基于改进卷积神经网络的柴油机故障诊断方法研究 被引量:18

Diesel engine fault diagnosis based on an improved convolutional neural network
在线阅读 下载PDF
导出
摘要 现有基于卷积神经网络(convolutional neural network,CNN)的柴油机故障诊断方法易过拟合,网络收敛速度较慢、处理小样本数据时诊断精度低,针对以上问题,提出了一种基于改进CNN的“端到端”柴油机故障诊断方法。该方法在CNN架构上,采用指数线性单元(exponential linear units,ELU)作为激活函数及小批量训练方法加速模型收敛,用全局平均池化(global average pooling,GAP)代替全连接层以降低过拟合风险。基于台架试验的诊断结果表明:所提方法进行柴油机典型故障诊断的精度达到99.18%;与未改进模型及现有基于CNN的柴油机故障诊断算法相比,该方法在处理小样本数据集时仍保持最高识别精度。 Aiming at the problems of slow model convergence and low diagnosis accuracy when processing small sample data based on the existing convolutional neural network(CNN)diesel engine fault diagnosis method,a more effective method based on an improved CNN was proposed.In the convolutional neural network architecture,exponential linear units(ELU)were used as the activation function,the small batch training method accelerated the model convergence,and the global average pooling(GAP)replaced the fully connected layer to reduce the risk of overfitting.The experimental data analysis shows that the accuracy of the method proposed for the diesel engine typical fault diagnosis reaches 99.18%;compared with the unimproved model and the existing CNN-based diesel engine fault diagnosis algorithm,this method still maintains the highest accuracy when dealing with small sample data sets.
作者 张俊红 孙诗跃 朱小龙 周启迪 戴胡伟 林杰威 ZHANG Junhong;SUN Shiyue;ZHU Xiaolong;ZHOU Qidi;DAI Huwei;LIN Jiewei(State Key Laboratory of Combustion for Internal Combustion Engines,Tianjin University,Tianjin 300072,China;Renai College,Tianjin University,Tianjin 301636,China)
出处 《振动与冲击》 EI CSCD 北大核心 2022年第6期139-146,共8页 Journal of Vibration and Shock
基金 内燃机可靠性国家重点实验室开放课题(skler-202009)。
关键词 柴油机 故障诊断 深度学习 卷积神经网络(CNN) diesel engine fault diagnosis deep learning convolutional neural network(CNN)
  • 相关文献

参考文献6

二级参考文献32

共引文献1906

同被引文献172

引证文献18

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部