期刊文献+

移动机器人避障的机器学习算法研究 被引量:5

Research on Machine Learning Algorithm for Obstacle Avoidance of Mobile Robots
在线阅读 下载PDF
导出
摘要 为提高移动机器人的实时避障能力,采用机器学习算法建立机器人实时判别模型,可根据检测到的障碍物距离实时预测出机器人移动方向。通过对机器学习算法的综合评价指标进行研究,分析模型预测性能的好坏。同时,为防止模型过拟合,减小泛化误差,再对机器学习算法进行交叉验证。实验结果表明,随机森林算法的综合评价指标最高,均达到了99.9%,朴素贝叶斯综合评价指标最差,约在52.9%,机器学习算法在交叉验证之后可生成更加可靠稳定的实时判别模型。 In order to improve the real-time obstacle avoidance ability of mobile robots,a robot learning real-time discriminant model is established by using machine learning algorithm,the moving direction of the robot can be predicted in real time according to the distance of the detected obstacles.By studying the comprehensive evaluation index of machine learning algorithm,the prediction performance of the model is analyzed.At the same time,in order to prevent the model from overfitting and reduce the generalization error,the machine learning algorithm is cross-validated. The experimental results show that the comprehensive evaluation index of the random forest algorithm is the highest,reaching 99.9%,and the naive Bayesian comprehensive evaluation index is the worst,about 52.9%.The machine learning algorithm can generate a more reliable and stable discriminant model after cross-validation.
作者 宋启松 李少波 李志昂 胡建军 SONG Qi-song;LI Shao-bo;LI Zhi-ang;HU Jian-jun(School of Mechanical Engineering,Guizhou University,Guizhou Guiyang 550025,China)
出处 《机械设计与制造》 北大核心 2022年第3期272-275,共4页 Machinery Design & Manufacture
基金 国家智能制造新模式应用项目(工信厅装函[2017]468号) 贵州省科技计划项目(黔科合人才[2015]4011、黔科合平台人才[2016]5103、黔科合平台人才[2017]5788)。
关键词 移动机器人 机器学习算法 综合评价指标 交叉验证 Mobile Robot Machine Learning Algorithm Comprehensive Evaluation Index Cross-Validation
  • 相关文献

参考文献5

二级参考文献44

  • 1钱钧,杨汝清,翁新华,刘红星.一种安全工作于城区环境的消防侦察机器人[J].机器人,2006,28(6):571-575. 被引量:4
  • 2周延霞,吴玉香,胡跃明.非完整移动机械臂的避障运动规划[J].微计算机信息,2007,23(35):234-236. 被引量:2
  • 3Chow C K, Liu C N. Approximating discrete probability distributions with dependence trees[J]. IEEE Trans on Information Theory, 1968, 14(3): 462-467.
  • 4Friedman N, Geiger D, Goldszmidt M. Bayesian network classifiers[J]. Machine Learning, 1997, 29(2/3): 131-161.
  • 5Jing Y S, Pavlovie V, Rehg J M. Boosted Bayesian network classifiers[J]. Machine Learning, 2008, 73(2): 155-184.
  • 6John G H, Langley P. Estimating Continuous Distributions in Bayesian Classifiers[C]. Proc of the Eleventh Conf on Uncertainty in Artificial Intelligence(UAI-1995). San Mateo: 1995: 338-345.
  • 7Ptrez A, Larrafiagaa P, Inzaa I. Supervised classification with conditional Gaussian networks: Increasing the structure complexity from naive Bayes[J]. Int J of Approximate Reasoning, 2006, 43(1): 1-25.
  • 8Perez A, Larratnagaa P, Inza I. Bayesian classifiers based on kernel density estimation: Flexible classifiers[J]. Int J of Approximate Reasoning, 2009, 50(2): 341-362.
  • 9Bounhas M, Mellouli K, Prade H, et al. Possibilistic classifiers for numerical data[J]. Soft Computing, 2013, 17(5): 733-751.
  • 10He Y L, Wang R, Kwong S, et al. Bayesian classifiers based on probability density estimation and their applications to simultaneous fault diagnosis[J]. Information Sciences, 2014, 259(2): 252-268.

共引文献52

同被引文献59

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部