期刊文献+

GridNet:efficiently learning deep hierarchical representation for 3D point cloud understanding 被引量:2

原文传递
导出
摘要 In this paper,we propose a novel and effective approach,namely GridNet,to hierarchically learn deep representation of 3D point clouds.It incorporates the ability of regular holistic description and fast data processing in a single framework,which is able to abstract powerful features progressively in an efficient way.Moreover,to capture more accurate internal geometry attributes,anchors are inferred within local neighborhoods,in contrast to the fixed or the sampled ones used in existing methods,and the learned features are thus more representative and discriminative to local point distribution.GridNet delivers very competitive results compared with the state of the art methods in both the object classification and segmentation tasks.
出处 《Frontiers of Computer Science》 SCIE EI CSCD 2022年第1期1-9,共9页 中国计算机科学前沿(英文版)
基金 This work was supported by the National Natural Science Foundation of China(Grant No.61673033).
  • 相关文献

同被引文献4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部